SYLLABUS

(With effect from 2025-26)

ಪಠ್ಯಕ್ರಮ

(ಶೈಕ್ಷಣಿಕ ವರ್ಷ 2025-26)

Bachelor Degree In Computer Science & Engineering

III & IV Semester

Out Come Based Education
With
Choice Based Credit System

[National Education Policy Scheme]

P.E.S. College of Engineering, Mandya - 571 401, Karnataka

[An Autonomous Institution affiliated to VTU, Belagavi, Grant – in – Aid Institution (Government of Karnataka), Accredited by NBA (All UG Programs), NAAC and Approved by AICTE, New Delhi]

> ಪಿ.ಇ.ಎಸ್. ತಾಂತ್ರಿಕ ಮಹಾವಿದ್ಯಾಲಯ ಮಂಡ್ಯ-571 401, ಕರ್ನಾಟಕ (ವಿ.ಟಿ.ಯು, ಬೆಳಗಾವಿ ಅಡಿಯಲ್ಲಿನ ಸ್ವಾಯತ್ತ ಸಂಸ್ಥೆ)

Ph: 08232-220043, Fax: 08232 - 222075, Web: www.pescemandya.org

Department of Computer Science & Engineering

VISION

"PESCE shall be a leading institution imparting quality Engineering and Management education developing creative and socially responsible professionals."

MISSION

- ➤ Provide state of the art infrastructure, motivate the faculty to be proficient in their field of specialization and adopt best teaching-learning practices.
- > Impart engineering and managerial skills through competent and committed faculty using outcome based educational curriculum.
- Inculcate professional ethics, leadership qualities and entrepreneurial skills to meet the societal needs.
- ➤ Promote research, product development and industry-institution interaction.

QUALITY POLICY

Highly committed in providing quality, concurrent technical education and continuously striving to meet expectations of stake holders.

CORE VALUES

Professionalism

Empathy

Synergy

Commitment

Ethics

Department of Computer Science & Engineering

Department of Computer Science and Engineering

The Vision of the department is:

"The Department of Computer Science and Engineering shall create professionally competent and socially responsible engineers capable of working in global environment."

The mission of the department is:

DM1: Enforce best practices in teaching-learning, with dedicated faculty and supportive infrastructure to impart the knowledge in emerging technologies.

DM2: Improve Industry-Institute relationship for mutual benefit.

DM3: Inculcate ethical values, communication and entrepreneurial skills.

DM4: Sensitize social, legal, environmental and cultural diversity issues through professional training and balanced curriculum.

Program Educational Objectives (PEO's)

Graduates of the program shall

- Ability to have Successful computer professional career in IT industry and related areas
- Pursue higher education in engineering or management with the focus on intensive research and developmental activities.
- Develop their career as entrepreneurs in a Responsible, Professional and ethical manner to serve the society

The National Board of Accreditation (NBA) has defined twelve Program Outcomes for Under Graduate (UG) engineering programs as listed below.

Knowledge and Attitude Profile (WK)

- **WK1:** A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
- **WK2:** Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.
- **WK3:** A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.
- **WK4:** Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.

Department of Computer Science & Engineering

- **WK5:** Knowledge, including efficient resource use, environmental impacts, whole-life cost, re- use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.
- **WK6:** Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.
- **WK7:** Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
- **WK8:** Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
- **WK9:** Ethics, inclusive behavior and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

Program Outcomes (PO's)

- **PO1:** Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
- **PO2: Problem Analysis:** Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
- **PO3: Design/Development of Solutions:** Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
- **PO4:** Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).
- **PO5:** Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
- **PO6:** The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).

Department of Computer Science & Engineering

- **PO7: Ethics:** Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
- **PO8:** Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
- **PO9:** Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
- **PO10: Project Management and Finance:** Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
- PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

The Under Graduate (UG) of B.E Computer Science & Engineering Program has defined **Program Specific Outcomes (PSO)** which are listed below.

- **PSO-1:** Ability to apply problem solving skills in developing solutions through fundamentals of Computer Science and Engineering.
- **PSO-2:** Ability to apply Analytical Skills in the field of Data Processing Systems.
- **PSO-3:** Ability to design and develop applications through Software Engineering methodologies and Networking Principles.

Department of Computer Science & Engineering

		Bachelor of Engineering – Computer	Science & Engi	neerin	g (III	[–Se	mester)			
Sl.	Course Code	Course Title	Teaching	Hrs	/Wee	k	Credits	Examination Marks		
No.			Department	L	Т	P		CIE	SEE	Total
1	P24MA301C	Statistics and Probability	Mat	2	2	-	3	50	50	100
2	P24CS302	Data Structures	CS	3	-	-	3	50	50	100
3	P24CS303	Computer Organization	CS	3	-	-	3	50	50	100
4	P24CS304	Discrete Mathematics and Graph Theory	CS	3	-	-	3	50	50	100
5	P24CS305	Object Oriented Programming with JAVA	CS	3	-	-	3	50	50	100
6	P24CS306	Digital Systems Design CS 3					3	50	50	100
7	P24CSL307	Data Structures Laboratory	CS	-	-	2	1	50	50	100
8	P24CSL308	Object Oriented Programming with JAVA Laboratory	CS	-	-	2	1	50	50	100
9	P24CSL309	Digital Systems Design Laboratory	CS	-	-	2	1	50	50	100
10	P24HSMC310A	Employability Enhancement Skills - III	CS	1	-		1	50	50	100
	P24NSS311	National Service Scheme								
11	P24YOG311	Yoga	CS	-	-	_	-	50	50	PP/NP
	P24PED311	Physical Education								
12 AICTE Activity Points (students have to earn 100 points between 01 to 08 set								ry requ	iremen	t for the award of
		Total					22	550	550	
BRIDG	E COURSE	B.E [Lateral En	try Students]							
13	P24MADIP301	Basic Engineering Mathematics - I		2	2	-	-	100	-	-
14	P24HDIP308	Additional Communicative English - I			2	-	-	100	-	-

			Bachelor of Engineering - Computer S	cience & Engine	ering	(IV-	Seme	ster)			
Sl.	Course Code		Course Title	Teaching		s/Wee		Credits	Examination Marks		
No.				Department	L	T	P		CIE	SEE	Total
1	P24MA401C	Line	ar Algebra	Mat	2	2	-	3	50	50	100
2	P24CS402	Theo	ory of Computation	CS	3	-	-	3	50	50	100
3	P24CS403	Desi	gn & Analysis of Algorithms	CS	3	-	-	3	50	50	100
4	P24CS404	Softv	ware Engineering	CS	3	-	-	3	50	50	100
5	P24CS405	Data	base Management System	CS	3	-	-	3	50	50	100
6.	P24CS406	AVR	R Micro Controller	CS	3	-	-	3	50	50	100
7	P24CSL407	Desi	gn & Analysis of Algorithms Laboratory	CS	-	-	2	1	50	50	100
8	P24CSL408	Data	base Management System Laboratory	CS	-	-	2	1	50	50	100
9	P24CSL409	AVR	R Micro Controller Laboratory	CS	-	-	2	1	50	50	100
10	P24HSMC410A	Emp	loyability Enhancement Skills - IV	CS	1	-	-	1	50	50	100
	P24NSS411	Natio	onal Service Scheme								
11	P24YOG411	Yoga	a s	CS	-	-	-	-	50	50	PP/NP
	P24PED411	Phys	sical Education								
12		AICTE Activity Points (students have to earn 100 activity points between 01 to 08 semesters							Compulsory requirement for the award of a degree		
	Total								550	550	
BRID	OGE COURSE		B.E [Lateral E	Intry Students]							
13	P24MADIP401		Basic Engineering Mathematics - II		2	2	-	-	100	-	-
14	P24HDIP408 Additional Communicative English - II					2	-	-	100	-	-

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24
Course Title: Statistics and Probability (Con	mmon to CSE Streams)	
Course Code: P24MA301C	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P): 2:2:0	SEE Marks:50	SEE Weightage:50%
Teaching hours of Pedagogy: 40 Hours	Exam Hours: 3 Hrs	
Credits: 03		

Course Learning Objectives:

- 1 Understand the basic concepts of Statistics and Probability.
- 2 Categorize and **analyse** the given data using statistical tools.
- 3 Identify and apply the appropriate statistical method to solve given problems

Unit	Syllohus content	No. of hours		
UIIIt	Syllabus content	Theory	Tutorial	
I	Introduction to Statistics: Introduction, frequency distributions, Measure of central tendency-mean, median and mode - for grouped and ungrouped data, illustrative examples. Measure of dispersion-quartile and mean deviation - for grouped and ungrouped data. Moments, method of moments. Fitting of the curves $y=ax+b$, $y=ax^2+bx+c$, $y=ab^x$, $y=ax^b$ by using the method of least squares. Self – Study content: Coefficients of Dispersion. Linear regression-angle between two lines of regression.	06	02	
II	Probability distribution: Introduction to probability, Random Variables, Distribution function, Probability mass function and Probability density function. Discrete Probability Distributions-Introduction and Motivation, Binomial and Poisson's distribution. Continuous Probability Distributions-Exponential and Normal Distribution. Self-study: Geometric distribution and their properties.	06	02	
III	Joint Probability and Markov chain: Joint probability distribution - for two discrete random variables, expectation, covariance and correlation. Markov Chain: Introduction to Stochastic Process, Probability vector, Stochastic matrix, regular stochastic matrices, Markov chains, higher transition probabilities, Stationary distribution of Regular Markov chains and absorbing states. Self-study component — Joint Probability distribution for two continuous random variables.	06	02	
IV	Sampling theory: Sampling Theory – Introduction, Random sampling. Sampling from finite and infinite populations, Sampling distributions, Statistical hypotheses, Null Hypotheses, Tests of hypotheses and significance, Type-I and Type-II errors, level of significance, one tailed and two tailed tests,	06	02	

Department of Computer Science & Engineering

	tests of significance for large and small samples- Students 't' test and Chisquare test.		
	Self-study: Self-Study Content: F-test, Fisher's z-distribution.		
V	Statistical Modelling:		
	Basics of Time series analysis-semi average and moving average methods.		
	Correlation and regression, Karl Pearson's coefficient, lines of regression,		
	multiple regression, non-linear correlation. Introduction to R, Functions,	06	02
	Control flow and Loops, working with vectors and matrices, reading of data,		
	writing data, working with data, manipulating data, simulation.		
	Self-study: Multiple Correlation and Regression.		

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Understand the basic principles of statistics and probability.

CO2: Analyze the given data using statistical techniques.

CO3: Apply various statistical tests for solving the given problem.

CO4: Understand the basic concepts of R – programming to solve statistical problems.

TEXTBOOKS

- 1. V. K. Kapoor and S. C. Gupta, Fundamentals of Mathematical Statistics, 2020 & 12th Edition, Sultan Chand & Sons, New Delhi.
- 2. Kapur J. N. and Saxena H. C., Mathematical Statistics, 2010 & 2nd Edition, Sultan Chand & Sons, New Delhi.

REFERENCE BOOKS

- 1. E. Kreysizig, Advanced Engineering Mathematics, John Wiley and sons, 10th Ed. (Reprint) 2016.
- 2. R. Miller, J. E. Freund and R. Johnson, Probability and Statistics for Engineers, 2017 & 9th Edition, PHI, New Delhi.
- 3. A. Goon, M. Gupta and B. Dasgupta, Fundamentals of Statistics, World Press.

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2			2							
CO ₂	2	3			2							
CO3	3	2			1							
CO4 2 3 1												
Stren	Strength of correlation: Low-1, Medium-2, High-3											

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24			
Course Title: Data Structures		•			
Course Code: P24CS302	CIE Marks:50	CIE Weightage:50%			
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:50	SEE Weightage:50%			
Teaching hours of Pedagogy:40	Exam Hours: 3 Hrs				
Credits:3					

Course learning Objectives:

CLO1: To become familiar with the concept of pointers and its usage in data structure.

CLO2: To study and understand the representation and implementation of linear & non-linear data structures.

CLO3: To identify the appropriate data structure while solving real-time applications.

Unit 1 8 Hours

Basic Concepts: System Life Cycle, Algorithm Specification: Introduction, Performance Analysis **Pointers:** Review of Pointers, Pointers and arrays, Arrays of Pointers.

Structures: Arrays of Structures, Structures and Functions-Passing Individual Members, Passing the Entire Structure, Passing Structures through Pointers, Self-referential Structures.

Introduction: Basic Terminology-Elementary Data Structure Organization, Classification of Data Structures.

Self-Study Content: Pointers and Two-dimensional Arrays, Operations on Data Structures

Textbook Map: Text Book 1: Chapter 1: 1.1, 1.2, 1.4

Text Book 2: Chapter 1: 1.11; **Chapter 2:** 2.1, 2.2; **Chapter 3:** 3.7, 3.8;

Chapter 5: 5.3, 5.4, 5.5

Unit 2 8 Hours

Stacks: Introduction to Stacks, Operations on Stack, Applications of Stacks: Implementing Parentheses Checker, Conversion of Expression: infix to postfix, Evaluation of Expressions: prefix expression, postfix expression.

Self-Study Content Conversion of Expressions: infix to prefix, Prefix to postfix, prefix to infix, Postfix to infix

Textbook Map: Text Book 1: Chapter 3
Text Book 2: Chapter 7

Unit 3 8 Hours

Recursion: Introduction, Factorial of a number, Fibonacci series, Tower of Hanoi, GCD of two numbers.

Queues: Introduction to Queues, Operations on Queue

Types of Queues: Circular Queues, Deques, Priority Queues, Multiple Queues

Self-Study Content: Types of recursion with examples (Linear Search, Binary Search)

Applications of Queues: Josephus Problem

Textbook Map: Text Book 2: Chapter 7, Chapter 8

Department of Computer Science & Engineering

Unit 4	8 Hours

Linked Lists: Dynamic memory Allocation, Introduction, Operations on lists, Singly linked lists, Circular linked lists, Doubly Linked lists, Applications of linked lists-Polynomial Representation, Evaluation of polynomials

Self-Study Content: Doubly circular linked lists, Header linked list

Textbook Map: Text Book 1: Chapter 4

Text Book 2: Chapter 6, Appendix A

Unit 5 8 Hours

Trees: Introduction, Basic Terminology, Types of Trees, Traversing a Binary Tree, Huffman's tree. Applications of Trees, Binary Search Trees, Operations on Binary Search Trees, Threaded Binary Trees.

Self-Study Content: Expression Trees

Textbook Map: Text Book 1: Chapter 5

Text Book 2: Chapter 9, 10

COs	Course Outcomes with Action verb for the Course topics
CO1	Apply the concepts of pointers in data structures.
CO2	Analyze and represent various data structures and its operations.
CO3	Design algorithms using different data structures like List, Stack, Queue and Trees.
CO4	Develop programs with suitable data structure based on the requirements of the real-time
	Applications.

Sugge	Suggested Learning Resources:								
Textb	ooks:								
1	Fundamentals of Data Structures in C	E. Horowitz and S. Sahani, Anderson-Freed	2 nd Edition 2011	University Press					
2	Data Structures using C	Reema Thareja	3 rd Edition 2023	Oxford University Press					
Refer	rence Books:								
1.	Data Structures using C	Aaron M Tenenbaum, Yedidyah Langsam and Moshe J Augenstein	2014	Low Price Edition, Pearson Education					
2	Data Structures with C (Schaum's Outline Series)	Seymour Lipschutz	July 2017	McGraw Hill Education					

Department of Computer Science & Engineering

Web links and Video Lectures (e-resources)

All the concepts of Data Structures is covered under these below links:

- https://nptel.ac.in/courses/106102064/
- https://www.nesoacademy.org/cs/01-data-structure
- https://www.youtube.com/playlist?list=PLBlnK6fEyqRj9lld8sWIUNwlKfdUoPd1Y

E-Books/Resources:

https://www.academia.edu/28758384/

CO-PO Mapping

CO	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	PSO 3
CO1	Apply the concepts of pointers in data Structures.	3											2		
CO2	Analyze and represent various data structures and its operations.	3	3										2		
CO3	Design algorithms using different data structures like List, Stack, Queue and Trees.	3	3	3	1	1	1		1	1		2	2		
CO4	Develop programs with suitable data structure based on the requirements of the real-time applications.	3	3	3	1	1	1		2	1		2	2		

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24			
Course Title: Computer Organization					
Course Code: P24CS303	CIE Marks:50	CIE Weightage:50%			
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:50	SEE Weightage:50%			
Teaching hours of Pedagogy: 40	Exam Hours: 3 Hrs				
Credits:3					

Course learning Objectives:

CLO1: Conceptualize the basics of Organizational issues of a digital computer and compare the performance of machine instruction.

CLO2: Expose different ways of communication with I/O Devices.

CLO3: Notice how to perform computer arithmetic operation.

CLO4: Understand working of processing unit using different bus structures.

CLO5: Illustrate different Types of memory devices with their principles.

Unit 1 8 Hours

BASIC STRUCTURE OF COMPUTERS: Basic operational Concepts, Performance.

INSTRUCTION SET ARCHITECTURE: Memory Location and Addresses, Memory Operations,

Instruction and Instruction Sequencing, Addressing Modes, Assembly Language.

Self-Study Content: Functional Units of Computer, Number Representation and Arithmetic Operations, Character representation

Text Book Mapping: Chapter 1-1.3,1.6, Chapter 2-2.1-2.5

Unit 2 8 Hours

INSTRUCTION SET ARCHITECTURE (Continued): Subroutines, Additional instructions.

BASIC INPUT/OUTPUT: Accessing I/O Devices- I/O Device Interface, Program Controlled I/O, An Example of a RISC-Style I/O program, Interrupts-Enabling and Disabling Interrupts, Handling Multiple Devices, Exceptions.

INPUT/OUTPUT ORGANIZATION: Bus Structure, Bus Operation -Synchronous Bus, Asynchronous Bus.

Self-Study Content: Stacks, Interface Circuits.

Text Book Mapping: Chapter 2- 2.7,2.8, Chapter 3- 3.1,3.2, Chapter 7- 7.1,7.2

Unit 3 8 Hours

BASIC PROCESSING UNIT: Some Fundamental Concepts, Instruction Execution, Hardware Components, Instruction Fetch and Execution Steps, Control Signals, Hardwired Control.

Self-Study Content: CISC Style Processors.

Text Book Mapping: Chapter 5-5.1-5.6

Unit4 8 Hours

Department of Computer Science & Engineering

ARITHMETIC: Multiplication of Signed Numbers, Fast Multiplication-Bit Pair Recoding of Multipliers, Carry-Save Addition of Summands, Integer Division, Introduction to Floating point

Numbers and Operations.

Self-Study Content: Design of Fast Adders, Multiplication of Unsigned numbers.

Text Book Mapping: Chapter 9- 9.4-9.7

Unit 5 8 Hours

MEMORY SYSTEM: Basic Concepts, Semiconductor RAM Memories, Memory Hierarchy, and Cache Memories – Mapping Functions.

Self-Study Content: Read Only Memories, Direct Memory Access

Text Book Mapping: Chapter 8-8.1, 8.2,8.5,8.6

Cours	Course Outcomes: On completion of this course, students are able to:									
COs	COs Course Outcomes with Action verbs for the Course topics.									
CO1	Understand the operation and organization of a digital computer system.									
CO2	Apply the knowledge of assembly language / algorithmic techniques to solve the given problem.									
CO3	Analyze the given assembly language code snippet.									
CO4	Design Memory Modules.									

Sugge	ested Learning Resources	:		
Textb	ooks:			
1	Computer Organization and Embedded Systems	Carl Hamacher ZvonkoVranesic, SafwatZaky	6 th Edition	Tata McGraw Hill.
Refer	ence Books:			
	Computer	William Stallings	9 th Edition	PHI, 2013
1.	Organization &			
	Architecture			
	Computer Systems	Vincent P.	2 nd Ed. Pearson	2004
2	Design and	Heuring& Harry F.	Education	
	Architecture	Jordan		
Web l	inks and Video Lectures	(e-resources)		

Department of Computer Science & Engineering

- https://nptel.ac.in/courses/106/103/106103068/
- https://nptel.ac.in/content/storage2/courses/106103068/pdf/coa.pdf
- https://nptel.ac.in/courses/106/105/106105163/
- https://nptel.ac.in/courses/106/106/106106092/
- https://nptel.ac.in/courses/106/106/106106166/
- http://www.nptelvideos.in/2012/11/computer-organization.html

CO-PO Mapping

CO	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3
CO1	Understand the operation and organization of a digital computer system.	2					1		1				2		
CO2	Apply the knowledge of assembly language / Algorithmic techniques to solve the given problem.		2	1			1		1				2		
CO3	Analyze the given assembly language code snippet.	2	2	1			1		1				1		
CO4	Design memory modules.	2	2	2			1		1				1		

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24
Course Title: Discrete Mathematics and	Graph Theory	
Course Code: P24CS304	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:50	SEE Weightage:50%
Teaching hours of Pedagogy:40	Exam Hours: 3 Hrs	
Credits:3		

Course learning Objectives:

CLO1: Use propositional and predicate logic in knowledge representation and truth verification.

CLO2: Demonstrate the application of discrete structures in different fields of computer science.

CLO3: Solve problems using recurrence relations and generating functions.

CLO4: Application of different mathematical proofs techniques in proving theorems in the courses.

CLO5: Compare graphs, trees and their applications.

Unit 1 8 Hours

Fundamentals of Logic: Basic Connectives and Truth Tables, Logic Equivalence - The Laws of Logic, Logical Implication - Rules of Inference. Fundamentals of Logic contd.: The Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems.

Self-Study Content: Real time applications on logic

Textbook Map: Text Book 1: Chapter2

Unit 2 8 Hours

Properties of the Integers: The Well Ordering Principle - Mathematical Induction, Fundamental Principles of Counting: The Rules of Sum and Product, Permutations, Combinations - The Binomial Theorem, Combinations with Repetition.

Self-Study Content: Applications and examples

Textbook Map: Text Book 1: Chapter4: 4.1, Chapter1

Unit 3 8 Hours

Relations and Functions:

Cartesian Products and Relations, Functions - Plain and One-to-One, Onto Functions. The Pigeon-hole Principle, Function Composition and Inverse Functions. **Relations:** Properties of Relations, Computer Recognition - Zero-One Matrices and Directed Graphs, Partial Orders - Hasse Diagrams, Equivalence Relations and Partitions.

Self-Study Content: Approaches of relations and functions on computer science

Textbook Map: Text Book 1: Chapter5, Chapter7: 7.1 to 7.4

Unit 4 8 Hours

Department of Computer Science & Engineering

The Principle of Inclusion and Exclusion: The Principle of Inclusion and Exclusion, Generalizations of the Principle, Derangements - Nothing is in its Right Place, Rook Polynomials. **Recurrence Relations:** First Order Linear Recurrence Relation, The Second Order Linear Homogeneous Recurrence Relation with Constant Coefficients.

Self-Study Content: Examples on recurrence relations

Textbook Map: Text Book 1: Chapter8: 8.1 to 8.4, Chapter10: 10.1,10.2

Unit 5 8 Hours

Introduction to Graph Theory: Definitions and Examples, Sub graphs, Complements, and Graph Isomorphism, **Trees:** Definitions, Properties, and Examples, Routed Trees, Trees and Sorting, Weighted Trees and Prefix Codes

Self-Study Content: Applications of graph theory in computer science

Textbook Map: Text Book 1: Chapter11: 11.1 to 11.2 Chapter12: 12.1 to 12.4

COs	Course Outcomes with Action verbs for the Course topics	Bloom's Taxonomy Level	Level Indicator
CO1	Summarize propositional and predicate logic in knowledge representation and truth verification	Understand	L2
CO2	Demonstrate the application of discrete structures in different fields of computer science.	Understand	L2
CO3	Describe problems using recurrence relations and generating functions.	Understand	L2
CO4	Demonstrate the Application of different mathematical proofs techniques in proving theorems in the courses.	Analyze	L4
CO5	Compare graphs, trees and their applications.	Apply	L4

Sugge	ested Learning Resources:											
Textbooks:												
1.	Discrete and Combinatorial Mathematics	Ralph P. Grimaldi	5 th Edition, 2004	Pearson Education								
Refer	rence Books:	<u>.</u>										
1.	Discrete Mathematics - A Concept based approach	Basavaraj S Anami and Venakanna S Madalli	2016	Universities Press								
2.	Discrete Mathematics and its Applications	Kenneth H. Rosen	6th Edition, 2007	McGraw Hill								
3.	A Treatise on Discrete Mathematical Structures	Jayant Ganguly	2010	Sanguine-Pearson								

Department of Computer Science & Engineering

4.	Discrete Mathematical	D.S. Malik and	2004	Thomson
	Structures: Theory and	M.K. Sen		
	Applications			
5.	Discrete Mathematics with	Thomas Koshy	Reprint 2008.	Elsevier, 2005
	Applications		_	

Web links and Video Lectures (e-resources)

- 1. https://nptel.ac.in/courses/106106183
- 2. https://www.youtube.com/watch?v=p2b2Vb-cYCs
- 3. https://www.youtube.com/watch?v=i8XeVATqeag
- 4. https://www.coursera.org/courses?query=discrete%20mathematics
- 5. https://www.codecademy.com/learn/discrete-math
- **6.** https://brilliant.org/wiki/discrete-mathematics/

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar Presentation
- 3. Case study
- 4. Learn by Doing

CO-PO Mapping

CO's	Statements	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3
CO1	Summarize propositional and predicate logic in knowledge representation and truth verification	2	2			1	1					2	1		
CO2	Demonstrate the application of discrete structures in different fields of computer science	2	2				1					1	1		

Department of Computer Science & Engineering

CO3	Describe problems using recurrence relations and generating functions.	2	2						1	1	
CO4	Application of different mathematical proofs techniques in proving theorems in the courses	2	2			1	1		1	1	
CO5	Compare graphs, trees and their applications	2	2	1					1	1	

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24
Course Title: Object Oriented Program	nming with JAVA	
Course Code: P24CS305	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:50	SEE Weightage:50%
Teaching hours of Pedagogy:40	Exam Hours: 3 Hrs	
Credits:3		

Course learning Objectives:

- CLO1: Explain the syntax, data types, operators, and control structures of Java.
- CLO2: Develop Java programs using classes and objects to represent real-world entities, incorporating inheritance, polymorphism, abstraction, and encapsulation.
- CLO3: Design multithreaded Java applications using thread lifecycle control and synchronization mechanisms to manage concurrency.
- CLO4: Construct type-safe code using generics and boxing.
- CLO5: Implement robust runtime error management in Java by utilizing exception handling.
- CLO6: Examine Java code to detect and correct errors.

Unit 1 8 Hours

Creating Java Programs: Comparing Procedural and Object-Oriented Programming Concepts, Features of the Java Programming Language, Understanding the First Class, Understanding the main() Method, Saving a Java Class, Adding Comments to a Java Class.

Using Data: Declaring and Using Constants and Variables, Using the Boolean Data Type, Learning About Floating-Point Data Types, Using the char Data Type, Using the Scanner Class to Accept Keyboard Input.

Making Decisions and looping: The if and if...else Statements, Nesting if and if...else Statements, Using Logical AND and OR operators, Using the switch Statement, Creating while Loops, Creating a for Loop.

Arrays: Declaring an Array, Initializing an Array, Using Variable Subscripts with an Array, Passing Arrays to and Returning Arrays from Methods.

Self-Study Content: Understanding Type Conversion, Nested loops.

Textbook mapping

Textbook 1: Chapter 1, Chapter 2, Chapter 5, Chapter 6, Chapter 8.

Unit 2 8 Hours

Introducing Classes, Objects, and Methods: Class Fundamental, How Objects are Created, Reference Variables and Assignment, Methods, Returning from a Method, Returning a Value, Using Parameters Constructors, Parameterized Constructors, The new Operator Revisited, The this Keyword. Controlling Access to Class Members, Pass Objects to Methods, How Arguments are Passed, Method Overloading, Overloading Constructors, Understanding static, Varargs: Variable-Length Arguments.

Inheritance: Inheritance Basics, Member Access and Inheritance, Constructors and Inheritance, Using super to Call Superclass Constructors, Using super to Access Superclass Members, Creating a Multilevel Hierarchy, When are Constructors Executed?, Superclass References and Subclass, Objects, Method Overriding, Using Abstract Classes.

Self-Study Content: Nested and Inner Classes, Garbage Collection and Finalizers, Using final, final Prevents Overriding, final Prevents Inheritance, Using final with Data Members.

Textbook mapping

Department of Computer Science & Engineering

Textbook 2: Chapter 4, Chapter 6, Chapter 7.

Unit 3

8 Hours

Interface Fundamentals: Creating an Interface, Implementing an Interface, Using Interface References, Implementing Multiple Interfaces, Constants in Interfaces, Interfaces can be Extended.

Packages: Package Fundamentals, Packages and Member Access, Importing Packages.

Multithreaded Programming: Multithreading Fundamentals, the Thread Class and Runnable Interface, Creating a Thread, Creating Multiple Threads, Determining When a Thread Ends, Thread Priorities.

Self-Study Content: Nested Interfaces, Synchronization, Using Synchronized Methods, The Synchronized Statement.

Textbook mapping

Textbook 2: Chapter 8, Chapter 9, Chapter 12.

Unit 4

8 Hours

Character and Strings: Understanding String Data Problems, Using Character Class Methods, Declaring and Comparing String Objects, Using a Variety of String Methods.

Enumerations, Autoboxing, and Annotations: Enumerations, Java Enumerations are Class Types, The values () and valueOf() Methods, Constructors, Methods, Instance Variables and Enumerations, Enumerations Inherit Enum, Autoboxing, Annotations (Metadata).

Exception Handling: Learning About Exceptions, Trying Code and Catching Exceptions, Throwing and Catching Multiple Exceptions, Using the finally Block, Understanding the Advantages of Exception Handling, Specifying the Exceptions that a Method Can Throw.

Self-Study Content: Tracing Exceptions Through the Call Stack, Creating Your Own Exception Classes.

Textbook mapping

Textbook 1: Chapter 7, Chapter 12.

Textbook 2: Chapter 13.

Unit 5

8 Hours

Generics: Generics Fundamentals, A Simple Generics Example, Generics Work Only with Objects, Generic Types Differ Based on Their Type Arguments, A Generic Class with Two Type Parameters, The General Form of a Generic Class, Bounded Types, Using Wildcard Arguments, Bounded Wildcards, Generic Methods.

Applets : Applet Basics, A Complete Applet Skeleton, Applet Initialization and Termination, A Key Aspect of an Applet's Architecture, Requesting Repainting, Using the Status Window, Passing Parameters to Applets.

Self-Study Content: Generic Constructors, Generic Class Hierarchies

Textbook mapping

Textbook2: Chapter 14, Chapter 15.

Course Outcomes:

- 1. Understand the fundamentals of Java programming language.
- 2. Apply object-oriented programming concepts using Java.
- 3. Develop Java applications using multithreading, generics and exceptions.
- 4. Analyze code snippets or programming scenarios to identify issues and propose solutions.

Department of Computer Science & Engineering

Sugge	ested Learning Resources:			
Textb	ooks:			
SI.	Title	Author	Year & Edition	Publisher
No.			(Latest)	
1	Java Programming	Joycefarell	9 th Edition, 2018 ISBN: 978-1-337-39707-0	Cengage
2	Java Programming – A comprehensive Introduction	Herbert Schildt and Dale Skrien	1 st Edition, 2013 ISBN: 978-0-07-802207-4	McGraw Hill
Refer	ence Books:		1	
1	The Complete Reference - Java	Herbert Schildt	12 th Edition, 2022	McGraw Hill Education
2	Learning Java: An Introduction to Real- World Programming with Java.	Marc Loy, Patrick Niemeyer, Daniel Leuck	6 th Edition, 2023	O'Reilly Media
3	Guide to Java: A Concise Introduction to Programming	James T. Streib, Takako Soma	2 nd Edition, 2023	Springer

Web links and Video Lectures (e-resources)

- 1. https://www.youtube.com/watch?v=OjdT2l-EZJA&list=PLfn3cNtmZdPOe3R wO h540QNfMkCQ0ho
- 2.https://www.youtube.com/watch?v=VHbSopMyc4M&list=PLBlnK6fEyqRjKA_NuK9mHmlk0dZzuP1P5
- 3. https://www.youtube.com/watch?v=bm0OyhwFDuY&list=PLsyeobzWxl7pe_liTfNyr55kwJPWbgxB5
- 4. https://www.youtube.com/watch?v=GoXwIVyNvX0

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Debugging Exercises.
- 2. Problem Based Learning.
- 3. Student-Led Demonstrations.

Department of Computer Science & Engineering

CO-PO Mapping

CO's	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	PSO 3
CO1	Understand the fundamentals of Java programming language.			3				,	0		10		1		
CO2	Apply object- oriented programming concepts using Java.	3	2	2		1			2				1		
CO3	Develop Java applications using multithreading, generics and exceptions.	3	2	2		1			2				1		
CO4	Analyse code snippets or programming scenarios to identify issues and propose solutions.	2	2	2		1			2	2			1		

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24			
Course Title: Digital System Design					
Course Code: P24CS306	CIE Marks:50	CIE Weightage:50%			
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:50	SEE Weightage:50%			
Teaching hours of Pedagogy:40	Exam Hours: 3 Hrs				
Credits:3					

Prerequisite: Number Systems, Basic Gates.

Course learning Objectives:

CLO1: Understand Boolean laws and minimization techniques and fundamental gates.

CLO2: Design of combinational logic circuits using minimum number of gates, Decoders and Multiplexers.

CLO3: Understand the Sequential logic components and Design of sequential circuits.

CLO4: Understand and use high-level hardware description languages (VHDL) to design combinational /sequential circuits.

CLO5: Conduct and Simulate practical experiments of combinational and sequential circuit.

Unit 1 8 Hours

Boolean Algebra: Introduction, Logic gates, Boolean Laws, Duality, Boolean expression in standard SOP and POS, Realization using basic gates and universal gates. Minimization Of Switching Functions: Introduction, K-Map: Two-variable, Three-variable and Four-variable K-map, Don't care combinations, Map entered variable(VEM), Limitation of K-map, Code converters: Binary to gray, BCD to Excess 3, Quine-Mc-Clusky method- 3 variable.

Self-Study Content: | Self-study component: Quine-Mc-Clusky method- 4,5 variable

Textbook mapping:

Text Book 1- Chapter 3- 3.3-3.6, Chapter 4- 4.1-4.7,4.9, Chapter 5- 5.1-5.6,5.8,5.10, Chapter 6- 6.1-6.4, Chapter 7- 7.9-7.13

Unit 2 8 Hours

Combinational Logic Design: Introduction to combinational circuits, Adders, Subtractors, ripple carry adder, Look ahead carry adder, Comparators:1-bit and 2bit magnitude comparator, Encoders: octal to Binary and Decimal to BCD encoder, Priority encoders, Decoders: 2 to 4, 3 to 8 line decoder, Multiplexers: 2:1,4:1, 8:1,16:1, Design combinational circuits using Decoders and Multiplexers.

Self-Study Content: 7 Segment Decoder, Demultiplexer.

Textbook mapping:

Textbook 1: Chapter 7-7.1-7.6,7.10, Chapter 8-8.1-8.6, 8.7, Chapter 9-9.1-9.5,9.8-9.12

Unit 3	8 Hours
Unit 3	8 Hours

Introduction to Sequential Circuits: Classification of sequential circuits: Asynchronous and Synchronous, NAND and NOR latches and flip flops: Excitation tables, State diagram and Characteristic equation of SR, JK, Race around condition, Master slave JK flip flops, Excitation tables, State diagram and Characteristic equation of D and T flip flops, Conversion of SR to JK, JK to D, T to D Flip flops.

Self-Study Content: | Conversion of JK to SR, D to JK and D to T Flip flops

Department of Computer Science & Engineering

Textbook mapping

Textbook 1: Chapter 10- 10.1-10.13

Unit 4 8 Hours

Introduction to Shift Registers and Counters: Data Transmission In Shift Registers, Serial In Serial Out Shift Register, Serial In Parallel Out Shift Register, Parallel In Serial Out Shift Register, Parallel In Parallel Out Shift Register, Design of shift registers using JK and D flip Flop's, Application Of Shift Registers: Ring Counter, Johnson Counter Up/Down Synchronous and Asynchronous Introduction, Design counters using JK and T Flip flop.

Self-Study Content: | Effects of propagation delay in ripple counters, Sequence detector design

Textbook mapping

Textbook 1: Chapter 11- 11.1-11.12, Chapter 12- 12.1-1.0,12.11, Chapter 13- 13.1-13.2,13.8

Unit 5 8 Hours

Hardware description languages, VHDL description of combinational circuits, VHDL models for multiplexers, VHDL modules, Sequential statements and VHDL processes, Modeling Flip-flops using VHDL Processes, VHDL Modeling registers and counters using VHDL processes.

Self-Study Content:

Compilation, simulation and synthesis of VHDL code, Simple synthesis examples.

Textbook mapping:

Textbook 2: Chapter 1- 1.3, Chapter 2- 2.1-2.5, CHAPTER 4- 4.1-4.9, Chapter 8- 8.2-8.3,8.7

Course Outcomes: At the end of the course students should be able to:

- 1. **Apply** Boolean Algebra / K Map and knowledge of fundamental gates in minimizing Logic function.
- 2. Analyze Combinational and Sequential circuits.
- 3. **Design** / sequential logic circuit for the given problem.
- 4. Implement Combinational/ Sequential logic circuit using VHDL code.

Sugge	ested Learning Resources:			
Texth	oooks:			
1.	Fundamentals of Digital Circuits	A. Anand Kumar	4th Edition, 2016	PHI Learning
2.	Digital Systems Design using VHDL	Charles H.Roth, Jr., LizyKurian John	2nd Edition, 2017	McGraw-Hill Education
Refer	ence Rooks			

Page24

Department of Computer Science & Engineering

1.	Digital Design with an introduction to the Verilog HDL, VHDL and system	M.Morris Mano, Michael D.Ciletti	6th edition,2020	Pearson Publication
2.	verilog Digital Principles and applications	Donald P Leach, Albert Paul Malvino, Goutam Sahay	8th edition,2017	McGraw-Hill Education

Web links and Video Lectures (e-resources)

https://nesoacademy.org/ec/05-digital-electronics

https://dvikan.no/ntnu-studentserver/kompendier/digital-systems-design.pdf

https://drive.google.com/file/d/11w9LhePHIhwBljiWSXrmEJgXj5RE05j4/view?usp=sharing

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- Flip Class
- Seminar/ poster Presentation
- Individual Role play/Team Demonstration/ Collaborative Activity
- Case study
- Learn by Doing

CO-POMapping

CO	Statement	PO	PSO	PSO	PSO										
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	Apply Boolean Algebra / K Map and knowledge of fundamental gates in minimizing Logic function	3											1		
CO2	Analyze Combinational and Sequential circuits	3	3										1		
CO3	Design /sequential logic circuit for the given problem	3	3	3									1		1
CO4	Implement Combinational/ Sequential logic circuit using VHDL code		3	3									1		

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24							
Course Title: Data Structure Laboratory	y								
Course Code: P24CSL307	CIE Marks:50	CIE Weightage:50%							
Teaching hours/week (L:T:P):0:0:2	SEE Marks:50	SEE Weightage:50%							
Teaching hours of Pedagogy:24	Exam Hours: 3								
Credits:1									
Note: All programs are to be implemented using C Language									

- 1. In a travel management system, distances between various travel checkpoints are recorded. Create a structure DISTANCE with members kms and meters to store these values. Write a C program that calculates the total and remaining distance between two points by performing addition and subtraction of distances using functions that accept pointers to the structure.
- 2. Design a basic task management system that uses a stack (implemented using an array with a fixed maximum size MAX) to manage tasks based on their arrival time following a Last-In-First-Out (LIFO) strategy. Each task is represented by an integer (e.g., task ID or priority code). Develop a menu-driven C program to support the following operations:
 - Add (push) a new task onto the stack. If the stack is full, display an appropriate overflow message.
 - Remove (pop) the most recent task from the stack. If the stack is empty, display an underflow warning.
 - Display the current status of the stack, showing all tasks waiting to be processed.
- 3. Develop a module for a compiler or expression evaluator that converts standard mathematical expressions from **infix notation** (e.g., A + B * C) to **postfix notation** (also known as Reverse Polish Notation, e.g., A B C * +). This conversion is essential for efficient expression evaluation using stacks. Implement a C program to perform the following:
 - Accept a valid infix expression containing operands and operators (+, -, *, /, ^, and parentheses).
 - Convert the expression into its corresponding postfix form using stack operations.
 - Display the resulting postfix expression suitable for evaluation by machines or interpreters.
- 4. Design a recursive solution module for solving classic computational problems that frequently arise in mathematical modeling and system simulations. Implement the following operations using recursion in C:
 - Disk Movement in Automation Systems (Tower of Hanoi):

Simulate the process of moving disks between pegs in an automated robotic arm system using the Tower of Hanoi logic. The objective is to move n disks from the source peg to the destination peg following the recursive strategy.

- Fault Detection in Signal Processing (GCD of Two Numbers):
 Determine the Greatest Common Divisor (GCD) of two frequency values to identify synchronization intervals or signal overlaps using the Euclidean algorithm implemented recursively.
- Recursive Evaluation in Data Streams (Find Largest of 'n' Numbers): Implement a recursive approach to find the largest value in a dynamic dataset, such as real-time sensor data or test scores, without using loops or built-in sort mechanisms.

Department of Computer Science & Engineering

- 5. Develop a hospital emergency management system using a priority queue where each patient is assigned a priority value the lower the number, the more critical the case. Implement a C program to:
 - Add a patient to the emergency queue with name and priority.
 - Attend to the most critical patient by removing the one with the highest priority.
 - Display the list of waiting patients along with their priority levels.
- 6. Implement an order tracking system using a Singly Linked List (SLL) where each order is represented by an order ID (integer). Develop a C program to:
 - Insert n new orders either at the front (VIP orders) or at the rear (regular orders).
 - Delete a specific order ID after serving it, with a proper message if the ID is not found.
 - Display the list of all pending orders.
- 7. Build a ticket booking system for a theatre or event using a queue where each booking request is stored as a string (e.g., user name or booking code). The system must ensure bookings are handled in the order they arrive. Using a linked list implementation in C, perform the following operations:
 - Insert a new booking request into the queue.
 - Remove the front request once it's processed.
 - Display all pending booking requests in the queue.
- 8. Develop a patient record management system for a hospital using a Doubly Linked List (DLL). Each patient record should include the following details: PATIENT_ID, NAME, DIAGNOSIS, and ADMISSION_DATE. Implement a menu-driven C program to perform the following operations:
 - Create an ordered list of N patient records sorted by PATIENT_ID.
 - Count and display the total number of patients currently admitted.
 - Delete the patient record at a specified position (e.g., patient discharge).
 - Display all patient records in order, showing full details.
- 9. Design a module of a computer algebra system that adds two polynomial expressions. Each polynomial is represented using a linked list, where each node contains a coefficient and exponent. Implement a C program to:
 - Add two polynomials by traversing their terms in descending order of exponents and combining like terms.
 - Display the resulting polynomial in standard mathematical format.
- 10. Write a C program to simulate an inventory tracking system using a Binary Search Tree (BST). Each node represents a product, uniquely identified by an integer product_id. Through a menudriven interface, perform the following operations:
 - Create the BST by inserting N product IDs.
 - Traverse the BST in:
 - o Inorder (for sorted view of products)
 - o Preorder (for serialization or storage)
 - o Postorder (for safe deletion or restocking sequence)

Course Outcomes:

- 1. **Design** algorithms using different data structures like List, Stack, Queue and Trees.
- 2. **Develop** programs with suitable data structure based on the requirements of the real time applications.

Department of Computer Science & Engineering

CO-PO Mapping

CO	Statements	PO	PS	PS	PS										
		1	2	3	4	5	6	7	8	9	10	11	01	O2	03
CO1	Design algorithms using different data structures like List, Stack, Queue and Trees.	3	3	3	1				2	2		2	2		1
CO2	Develop programs with suitable data structure based on the requirements of the real time applications.	3	3	3	2	2		1	3	2		2	2		1

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24
Course Title: Object Oriented Programm	ning with JAVA Laboratory	•
Course Code: P24CSL308	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P):0:0:2	SEE Marks:50	SEE Weightage:50%
Teaching hours of Pedagogy:24	Exam Hours: 3	
Credits:1		

Note: All programs are to be implemented using JAVA Language

1. Write a Java program to simulate a simple shopping cart billing system for a retail store. The program should first prompt the user to enter the number of items they wish to purchase. For each item, collect details such as the item name, quantity, and price per unit. Then calculate total cost of all items. After calculating the total, add a 5% tax to it. Based on the total amount after tax, apply appropriate delivery charges according to the criteria shown in the table below.

Grand Total (after 5% tax)	Delivery Charge (₹)
≤ 500	50
$> 500 \text{ and} \le 1000$	30
> 1000	0

- 2. Write a Java program to implement a simple multiple-choice quiz system that asks **4 questions** to the user. Each question should have **4 options**, and the user must enter their answer by selecting a number between 1 and 4. After all answers are entered, the program should calculate the **total number of correct answers** and the **percentage score**.
- 3. Create a Java program for a Bank Account System without using constructors. Define a class with fields for account holder name, account number, and balance. Include methods to set account details, deposit money, withdraw (only if balance remains ₹500 or more after withdrawal), apply simple interest, and display account details. The system must ensure that a minimum balance of ₹500 is maintained at all times.
- 4. Design and implement a Java program that simulates a basic ticket booking system for an event. Each booking must include a customer name, number of tickets, and a unique booking ID starting from 1000. Use a default constructor to take input for customer name and ticket count from the keyboard, and a parameterized constructor to accept these values directly. Implement a method to cancel tickets with proper validation and update the total number of tickets sold, which should be tracked using a static variable. Include a method to display the total tickets sold. In the main() method, create at least two bookings, cancel some tickets from each, and display the final total tickets sold.
- 5. Develop a Java application that models an electricity billing system for a power supply company. The system should support billing for two types of consumers: domestic and commercial. All consumers will have shared attributes such as customer name and the number of electricity units consumed. The billing process should vary depending on the consumer type, applying a rate of ₹4 per unit for domestic consumers and ₹7 per unit for commercial consumers. Additionally, include a tax of 5% on domestic bills and 10% on commercial bills. The program should prompt the user to choose the type of consumer, accept the required input, compute the total bill including applicable tax, and display the final payable amount. To achieve this, use **inheritance** by defining a base class

Department of Computer Science & Engineering

for common consumer details and creating two specialized classes for domestic and commercial consumers that extend this base class.

6. Write a Java program to simulate a **Smart Water Tank Monitoring System** using **interfaces** and multiple classes. Define three interfaces:

MotorControl – which includes methods startMotor() and stopMotor() to control the water pump.

WaterMonitor – which declares a constant MAX_LEVEL to represent the tank's maximum capacity and a method checkLevel(int currentLevel) to monitor the current water level.

EfficiencyCalculator – which defines a method calculateEfficiency(int refillAmount, int timeInSeconds) to calculate the pump's operational efficiency based on how much water was refilled and how long it took.

Implement all three interfaces in a class named SmartTank. Based on the input water level from the user, if the level falls below 20% of the tank's capacity, the motor should start, and the refill amount should be computed and displayed. Then, the efficiency of the refill operation should be calculated assuming a fixed refill time. If the water level is above 90% of the capacity, the motor should stop. If the level is in a safe range (between 20% and 90%), the system should take no action. In main() take input from the user and trigger appropriate actions.

- 7. Develop a Java program to simulate a basic library management system using **packages** and classes. Define a package named library.books that includes a Book class to hold information such as the book's title, author, total number of copies, and available copies. Implement methods within the class to perform borrowing and returning operations. Create a second package named library.user containing a Student class, which stores the student's name and the title of the book they have borrowed. In the main class, import both packages and demonstrate the borrowing and returning of a book by the student.
- 8. Implement a Java program to simulate a patient monitoring system using **multithreading.** In this application, two threads run concurrently to monitor vital signs. The first thread, TemperatureMonitor, reads a sequence of temperature values, displays each reading with a delay to mimic real-time monitoring, and then computes the average body temperature. The second thread, HeartRateMonitor, processes a list of heart rate values, prints each reading with a time delay, identifies the maximum heart rate, and generates a warning message if any value exceeds a critical threshold of 100 beats per minute.
- 9. Develop a Java application to simulate a basic real-time flight booking system. The program should prompt the user to enter the passenger's name and the number of tickets to be booked via keyboard input. Use an enumeration to define the ticket status with values like BOOKED and CANCELLED, and create a custom annotation to highlight the booking method as significant. Design a Passenger class to store the user's details and a Flight class to maintain the flight number, ticket status, and associated Passenger information. Include methods to handle booking, cancel the reservation, and display passenger and flight details before and after cancellation.
- 10. A university is developing a result processing system to compute and display the performance of students based on marks obtained in five subjects. Write a Java program that performs the following and handles the corresponding exceptions:

Accepts the student's name - Handle **NullPointerException** if the name is null or not provided (input contains only spaces).

Accepts marks for n subjects, calculates total and percentage - Handle **ArithmeticException** for division by zero.

Displays marks of a subject based on user's choice - Handle ArrayIndexOutOfBoundsException

Department of Computer Science & Engineering

l tor	1nva	l1d	cuh	iect.	number.
101	mya	HU	Sub	I C C L	mumber.

- 11. Develop a Java program for an e-commerce application that displays products sorted in ascending order by **name** or **price**. Use **generics** to implement a reusable sorting method. Allow the user to choose between sorting an array of String (product names) or Double (product prices), and display the sorted results.
- 12. Design and develop a Java Applet application that simulates a simple digital banner system for a college information display. The applet should continuously scroll the message "Computer Science" across the screen. In addition to the scrolling text, the applet must display a static welcome message (e.g., "Welcome to the Applet") and dynamically show the current system time which updates as the banner scrolls. The application should also track how many times the banner has scrolled and display this as a scroll count on the applet window.

Course Outcomes:

- 1. **Apply** the principles of object-oriented programming to design Java programs.
- 2. **Evaluate** Java programs by validating logic, analysing outputs, and explaining concepts.

CO-PO Mapping

CO's	Statement	PO	PSO	_	PSO										
CO1	Apply the principles of object-oriented programming to design Java programs.		2	1	1	5	6	7	1	9	10	11	1	2	3
CO2	Evaluate Java programs by validating logic, analysing outputs, and explaining concepts.	2	2	2	1	1			1				2		

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24					
Course Title: Digital Systems Design L	aboratory						
Course Code: P24CSL309	CIE Marks:50	CIE Weightage:50%					
Teaching hours/week (L:T:P):0:0:2	SEE Marks:50	SEE Weightage:50%					
Teaching hours of Pedagogy:24	Exam Hours: 3						
Credits:1							
Note: All programs are to be implement	ed using VHDL Language.						
C 1 Chemica 0 Chemica T 1 Tempera 0 Tempera X 1 Concentr	the process and to determine whition of plant status al rate > 10 litres/sec al rate <= 10 litres/sec atture > 91°C ture <= 91°C ration > 5 M ration <= 5M ration <= 5M rate <= 10 litres/sec atture <= 10 litres/seconsible situations when the warm	nether W = 1or not. =10 litres/second (b) Temperature ond and Temperature > 91°C. Give					
2. Design Logic circuit to convert 3 bit		gates.					
3. Design Full Subtractor using suitable	e Decoder.						
 4. A smart lighting system in a buildicorridor. The inputs are: A: Motion detected in the corridor B: Time of day (1 = night, 0 = day) C: Light level (1 = dark, 0 = bright) D: Manual override (1 = ON, 0 = Of the lights should turn ON if: Motion is detected and it's description It's night and manual overrid Use A P and C as select lines and 	FF) lark de is active						
Use A , B and C as select lines and the multiplexer. Construct the truth		-					
5. Implement Master slave D Flip-Flop	· •						
6. Design and demonstrate the convers	sion of JK flip flop to T Flip Flop	p					
7. Design and demonstrate 3-bit serial	in parallel out shift register using	g D Flip Flops.					
8. Design and demonstrate 2-bit synch							
9. Write the VHDL code for 8:1 Mux.							
10. Write the VHDL code for JK and D flip-flop. Simulate and verify its working.							
1. Write the VHDL code for 3-bit synchronous down counter. Simulate and verify its working.							

Department of Computer Science & Engineering

COs	Course Outcomes with Action verbs for the Course topics.	Bloom's Taxonomy Level	Level Indicator
CO1	Design and Conduct experiments to realize various combinational and sequential circuits using IC.	Create	L6
CO2	Simulate using Xilinx to synthesize their designs and perform timing analysis.	Create	L6

CO-PO Mapping

CO-1 O Mapping															
CO	Statement	PO	PS	PS	PS										
		1	2	3	4	5	6	7	8	9	10	11	01	O2	O3
CO 1	Design and Conduct experiments to realize various combinational and sequential circuits using IC.	3	2	3	2	2	1	1	1	2	1	1	1	1	1
CO 2	Simulate using Xilinx to synthesize their designs and perform timing analysis.	3	2	3	3	3	1	1	1	2	2	1	1	1	1

Department of Computer Science & Engineering

Academic Year: 2025-	.26	Semester: III	Scheme: P24							
	bility Enhancement Skill									
Course Code: P24HSN		CIE Marks: 50	CIE Weightag							
Teaching hours/week (L:T:P): 0:2:0	SEE Marks:50	SEE Weighta							
Teaching hours of Peda		Exam Hours: 3 Hrs		<u> </u>						
Credits: 01										
Course Learning Obj	ectives: This course will e	nable the students to:								
Calculations in	volving percentages, profit	& loss and discounts.								
 Explain concepts behind logical reasoning modules of direction sense and blood relations. 										
 Prepare students for Job recruitment process and competitive exams. 										
-	em Solving Skills.	1								
_	ming constructs of C langu	age to solve the real-wo	rld problem.							
UNIT – I			•	06 Hours						
Quantitative Aptitud	le: Number System – D	vivisibility & Remainde	er. Multiples &	k Factors.						
	, Decimal Fractions, Surds	•	•	c ructors,						
Self-study	Linear equations.									
component:				T						
UNIT – II				06 Hours						
Quantitative Aptitude	e: Percentages, Profits, Los	ss and Discounts.								
Logical Reasoning: B	lood Relations.									
Self-study component:	Inferred meaning, Chain	rule.								
UNIT – III				06 Hours						
Logical Reasoning: D	irection Sense Test.									
	ge of Speech and Voice, Se	ntence Correction								
Self-study	Height & distance.	mence correction.								
component:	Height & distance.									
UNIT – IV	C-PROGE	RAMMING - I		06 Hours						
Introduction: Keywo	ords and Identifier, Varial		ta Types Inpu	t/Output						
Operators, Simple Prog		ores and Constants, Da	tu Types, Inpu	a output,						
Flow Control: Ifels	se, for Loop, while Loop,	break and continue, sw	itchcase, go	to, Control						
Flow Examples, Simple Programs.										
Functions: Functions, User-defined Functions, Function Types, Recursion, Storage Class, Programs										
Arrays: Arrays, Multi-	-dimensional Arrays, Array	ys & Functions, Program	s.							
Self-study component:	Evaluation of Expression.									

Department of Computer Science & Engineering

UNIT – V C-PROGRAMMING - II 06 Hours

Pointers: Pointers, Pointers & Arrays, Pointers and Functions, Memory Allocation, Array & Pointer

Examples.

Strings: String Functions, String Examples, Programs.

Structure and Union: Structure, Struct & Pointers, Struct & Function, Unions, Programs.

Programming Files: Files Input/output

Self-study component: Error handling during I/O operations.

Course Outcomes: On completion of this course, students are able to:

COs	Course Outcomes with Action verbs for the Course topics	Bloom's Taxonomy Level	Level Indicator
CO1	Exhibit amplified level of confidence to express themselves in English.	Applying	L3
CO2	Solve the problems based on Number systems, percentages, profit & loss and discounts.	Analyzing	L4
CO3	Solve logical reasoning problems based on direction sense and blood relations.	Analyzing	L4
CO4	Apply suitable programming constructs of C language and / or suitable data structures to solve the given problem.	Applying	L3

Text Book(s):

- 1. The C Programming Language (2nd edition) by Brian Kernighan and Dennis Ritchie.
- 2. C in Depth by S K Srivastava and Deepali Srivastava.
- 3. Quantitative aptitude by Dr. R. S Agarwal, published by S. Chand private limited.
- 4. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.

Reference Book(s):

- 1. E. Balaguruswamy, Programming in ANSI C, 7th Edition, Tata McGraw-Hill. Brian W. Kernighan and Dennis M. Ritchie, The 'C' Programming Language, Prentice Hall of India.
- 2. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd.

Web and Video link(s):

1. Problem Solving through Programming in C - https://archive.nptel.ac.in/courses/106/105/106105171/

Department of Computer Science & Engineering

$CO \rightarrow / PO \downarrow$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1: Exhibit amplified level of confidence to express themselves in English.	1								2	3	1
CO2: Solve problems based on number systems, percentages, profit & loss and discounts.	3	3		2	1					2	1
CO3: Solve logical reasoning problems based on direction sense and blood relations.	2	3	2	2	1				1	2	
CO4: Apply suitable programming constructs of C language and / or suitable data structures to solve the given problem.	3	3	3	2	3				1	2	2

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24
Course Title: National Service Scheme		
Course Code: P24NSS311	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P): 0:0:2	SEE Marks:50	SEE Weightage:50%
Teaching hours of Pedagogy: 20-24 Hrs	Exam Hours: -	
Credits: 00		

Course Outcomes (COs):

Upon successful completion of this course, students will be able to:

- **CO1: Analyze Indian agriculture and organic farming:** Assess historical and current trends in Indian agriculture, focusing on organic farming's potential for sustainability and market access.
- **CO2: Design waste management systems:** Apply the 5 R's to design and evaluate waste management solutions considering technical, economic, and environmental factors.
- **CO3: Develop women's empowerment strategies:** Create plans for information-sharing platforms to address women's social and economic needs and promote community participation.
- **CO4: Apply engineering to sustainable development:** Integrate engineering knowledge to develop practical solutions for organic farming, waste management, and community development.
- **CO5:** Evaluate sustainable development impacts: Assess the social, economic, and environmental impacts of sustainable development initiatives.

Course Description: This course explores critical aspects of sustainable development, focusing on organic farming practices, effective waste management strategies, and initiatives for empowering women in social and economic spheres. It emphasizes practical application, problem-solving, and community engagement.

Course Content:

- Organic farming and its role in Indian agriculture (historical context, current practices, and future trends). Emphasis on connectivity for marketing organic produce.
- Waste management strategies across public, private, and governmental organizations, with a focus on the 5 R's (Reduce, Reuse, Recycle, Recover, Refuse).
- Establishing information-sharing platforms for women to address social and economic challenges.

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24
Course Title: Physical Education		
Course Code: P24PED311	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P): 0:0:2	SEE Marks:50	SEE Weightage:50%
Teaching hours of Pedagogy: 20-24 Hrs	Exam Hours: -	•
Credits: 00		

Course Outcomes: At the end of the course, the student will be able to

- 1. Understand the fundamental concepts and skills of Physical Education, Health, Nutrition and Fitness
- 2. Familiarization of health-related Exercises, Sports for overall growth and development
- 3. Create a foundation for the professionals in Physical Education and Sports
- 4. Participate in the competition at regional/state / national / international levels.
- 5. Create consciousness among the students on Health, Fitness and Wellness in developing and maintaining a healthy lifestyle.
- 6. Understand and practice of Traditional Games

Module I: Orientation

4 Hours

- 1. Lifestyle
- 2. Health & Wellness
- 3. Pre-Fitness test.

Module II: General Fitness & Components of Fitness

4 Hours

- 1. Warming up (Free Hand exercises)
- 2. Strength Push-up / Pull-ups
- 3. Speed 30 Mtr Dash

Module III: Specific games (Any one to be selected by the student)

16 Hours

- 1. Kabaddi Hand touch, Toe Touch, Thigh Hold, Ankle hold and Bonus.
- 2. Kho-Kho Giving Kho, Single Chain, Pole dive, Pole turning, 3-6 Up.

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24
Course Title: Yoga		
Course Code: P24YOG311	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P): 0:0:2	SEE Marks:50	SEE Weightage:50%
Teaching hours of Pedagogy: 20-24 Hrs	Exam Hours: -	•
Credits: 00		

Course Outcomes (COs):

Upon successful completion of this course, students will be able to:

- **CO1:** Understand Yoga's principles and philosophy: Explain the meaning, history, schools, aims, and importance of prayer in Yoga.
- **CO2: Perform basic Yoga practices safely:** Execute Suryanamaskar and selected Asanas with proper technique, breathing, and safety awareness.
- **CO3: Analyze Yoga's benefits and contraindications:** Explain the physiological and Psychological benefits and identify contraindications and precautions for various practices.
- **CO4: Apply Yoga for stress management and well-being:** Integrate Yoga into daily life for Stress reduction, focus enhancement, and improved well-being.
- **CO5: Evaluate Yoga misconceptions:** Identify and debunk common myths, promoting a Scientifically informed understanding of Yoga.

Course Description: This course introduces students to the fundamental principles and practices of Yoga, emphasizing its holistic benefits for physical, mental, and emotional well-being. It explores the philosophical underpinnings of Yoga, various techniques, and their practical application in daily life. The course also addresses common misconceptions and provides guidelines for safe and effective practice.

Course Content:

- Introduction to Yoga:
 - Meaning and Definitions of Yoga
 - o Historical Overview and Different Schools of Yoga (e.g., Hatha, Raja, Karma, Bhakti)
 - o Aim and Objectives of Yoga: Physical health, mental clarity, spiritual growth, stress management.
 - o Importance of Prayer and its role in Yoga
- Yogic Practices for Common Man:
 - o Brief introduction to various yogic practices suitable for beginners.
 - o Focus on promoting positive health and stress reduction.
- Rules and Regulations for Yogic Practices:
 - o Guidelines for safe practice (e.g., appropriate time, place, clothing, empty stomach).
 - o Contraindications and precautions for specific conditions.
- Misconceptions of Yoga:
 - o Addressing common myths and misunderstandings about Yoga.
 - o Clarifying the scientific basis of Yoga's benefits.
- Survanamaskar (Sun Salutation):
 - o Suryanamaskar prayer and its meaning.
 - o Need, importance, and benefits of Suryanamaskar.

- Detailed breakdown of the 12 counts with proper breathing and movement coordination.
- Practice of 2 rounds.
- Asanas (Postures):
 - Meaning and importance of Asanas.
 - o Detailed study of the following Asanas:
 - **Sitting:** Padmasana (Lotus Pose), Vajrasana (Thunderbolt Pose)
 - Standing: Vrikshasana (Tree Pose), Trikonasana (Triangle Pose)
 - **Prone:** Bhujangasana (Cobra Pose), Shalabhasana (Locust Pose)
 - **Supine:** Utthitadvipadasana (Raised Two-Legged Pose), Ardha Halasana (Half Plough Pose)
 - For each Asana:
 - Meaning of the name.
 - Step-by-step technique.
 - Breathing pattern.
 - Benefits.
 - Precautionary measures and contraindications.

Academic Year: 2025-26	Semester: III	Scheme: P24	
Course Title: Basic Engineering Mathem	atics – I		
Course Code: P24MADIP301	CIE Marks:100	CIE Weightage: 100%	
Teaching hours/week (L:T:P): 2:2:0			
Teaching hours of Pedagogy: 40 Hours			
Credits: 00			
Course Learning Objectives: to provi	de basic concepts of con	nplex trigonometry, vector	algebra,
differential & integral calculus, vector diff	erentiation and various meth	nods of solving first order dis	fferential
equations.			
	UNIT-I		
Complex Trigonometry: Complex Number a complex number, Argand's diagram, De-		-	
Vector Algebra: Scalar and vectors. Vector (Dot and Cross products). Scalar and vectors.		*	12 Hrs
Self-study components: De-Moivre's theor problems.	em (without proof). Roots o	f complex number - Simple	
	UNIT-II		
Differential Calculus: Polar curves –ang equation- Problems. Taylors series and Ma			
Partial Differentiation: Elementary problem variables. Total derivatives-differentiation		•	10 Hrs
Self-study components: Review of succestandard functions- Liebnitz's theorem approximations.			
	UNIT-III		
Integral Calculus: reduction formulae for these with standard limits-Examples. Apply volume and surface area of solids of revolutions.	ications of integration to are		10 Hrs
Self-study components: Differentiation usingle problems.	ınder integral sign (Integra	als with constants limits)-	

Department of Computer Science & Engineering

UNIT-IV	
Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl and Laplacian (Definitions only).	10 Hrs
Self-study components: Solenoidal and irrotational vector fields-Problems.	
UNIT-V	
Ordinary differential equations (ODE's): Introduction-solutions of first order and first-degree differential equations: homogeneous, exact, linear differential equations of order one and equations reducible to above types.	10 Hrs
Self-study components: Applications of first order and first-degree ODE's - Orthogonal trajectories of Cartesian and polar curves. Newton's law of cooling, R-L circuits- Simple illustrative examples from engineering field.	

Course	Outcomes: After completing the course, the students will be able to
CO1	Demonstrate the fundamental concepts-in complex numbers and vector algebra to analyze the
COI	problems arising in related area of engineering field.
CO2	Identify–partial derivatives to calculate rate of change of multivariate functions
	Apply-the acquired knowledge of integration and differentiation to evaluate double and triple
CO3	integrals to compute length surface area and volume of solids of revolution and identify velocity,
	acceleration of a particle moving in a space
CO4	Find analytical solutions by solving first order ODE's which arising in different branches of
CO4	engineering.

Text Book:

1. B. S. Grewal, Higher Engineering Mathematics (44thEdition2018), Khanna Publishers, New Delhi.

Reference books:

- 1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2015.
- 2. N. P. Bali and Manish Goyal: Engineering Mathematics, Laxmi Publishers, 7th Ed., 2007.

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: III	Scheme: P24
Course Title: Additional Communicative E	nglish – I	
Course Code: P24HDIP308	CIE Marks: 100	CIE Weightage: 100%
Teaching hours/week (L:T:P): 0:2:0	SEE Marks: -	SEE Weightage: -
Teaching hours of Pedagogy: 30 Hours	Exam Hours: 3 Hrs	
Credits: 00		

Module-1

Introduction to Communication Skills

6 Hours

Introduction to communication, Meaning and process, Channels of communication, Elements of communication, Barriers to effective communication. Activities - Making introductions, Sharing personal information, Describing feelings and opinions.

Module-2

Listening Skills I

4 Hours

Hearing vs. Listening, Types of listening, Determinants of good listening, Active listening process, Barriers to listening, Activities - Listening for pronunciation practice, Listening for personal communication, Listening for communication - language functions

Module-3

Speaking Skills I

6 Hours

Basics of speaking, Elements and Functions of speaking, Structuring your speech, Focusing on fluency, Homographs and Signpost words. Activities – Free Speech and Pick and Speak

Module-4

Reading Skills I

4 Hours

Developing reading as a habit, Building confidence in reading, improving reading skills, Techniques of reading - skimming and scanning. Activities - understanding students' attitudes towards reading, countering common errors in reading, developing efficiency in reading.

Writing Skills I

4 Hours

Improving writing skills, Spellings and punctuation, Letter and Paragraph writing. Activity – Writing your personal story

Module-5

Body Language and Presentation Skills

6 Hours

Elements of body language, Types, Adapting positive body language, Cultural differences in body language. 4 Ps in presentations, Overcoming the fear of public speaking, Effective use of verbal and nonverbal presentation techniques. Activity – Group presentations

Course Outcomes: On completion of this course, students will be able to,

- CO 1: Understand the role of communication in personal and professional success
- CO 2: Comprehend the types of technical literature to develop the competency of students to Apprehend the nature of formal communication requirements.
- CO 3: Construct grammatically correct sentences to strengthen essential skills in speaking & writing and to develop critical thinking by emphasizing cohesion and coherence
- CO 4: Demonstrate effective individual and teamwork to accomplish communication goals.

Department of Computer Science & Engineering

Textbooks and Reference Books:

- 1. Communication Skills by Sanjay Kumar and Pushpa Lata, Oxford University Press 2015.
- 2. Everyday Dialogues in English by Robert J. Dixson, Prentice-Hall of India Ltd., 2006.
- 3. Developing Communication Skills by Krishna Mohan& Meera Banerjee (Macmillan)
- 4. The Oxford Guide to Writing and Speaking, John Seely, Oxford.
- 5. English Language Communication Skills Lab Manual cum Workbook by Rajesh Kumar Singh, Cengage learning India Pvt Limited 2018

CO - PO - PSO Matrix

CO							PO							PSO	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1												2			
CO2										2					
CO3										2					
CO4									2						
CO5									2	2		2			

	emic Year: 2025-26	Semester: IV	Scheme: P24		
	e Title: Linear Algebra (Common to CS		T		
	e Code: P24MA401C	CIE Marks:50	CIE Weightag		
	ing hours/week (L:T:P): 2:2:0	SEE Marks:50	SEE Weightag	ge: 50%	
	ing hours of Pedagogy: 40 Hours	Exam Hours: 3 Hrs			
Credit					
	e Learning Objectives:	1.0			
1	To build up the knowledge of Matrices		157.11		
2	Understand algebraic structures like V			•	
3	To gain the knowledge of interplay be				
4	Apply Mathematical methods to solv matrix using LU, QR and SVD method	_	ons and to deco	ompose t	he given
TI 24	C-U-L			No. o	f hours
Unit	Synabi	is content		Theory	Tutorial
	Matrices and Linear Systems: Intr	oduction to Matrices and	Determinants;		
I	Special Matrices-Hermitian, Unita Decomposition. Solution to Linear E Applications of linear systems - in equation, Polynomial interpolation. Sol Self-Study: Linear equations in Electri	Equations by Gauss elimin Network analysis, Baland lve System of equations using	cing Chemical	06	02
II	Vector spaces: Vector spaces (Axio Linear Combinations, Linear Spans. Linear Dimension. Problems. Row space, bases and dimension. The Rank theore Illustrate using MATLAB. Self – Study: Change of bases – approcessing.	near Dependence and Indep column space and null spa em. Application to System	endence, Basis ce of a Matrix- of Equations –	06	02
III	Linear Transformations: Linear Transformations of R ² , Kernel and Ima Non-singular linear transformations. For representation of linear transformation properties of Linear transformations the Self – Study: Change of bases-appliprocessing.	ge of a linear transformation Rank-Nullity Theorem (Nons. Change of basis-Problemough MATLAB.	proof). Matrix ems. Visualize	06	02
IV	Diagonalization and quadratic for Diagonalization of a matrix using eigonalization of a matrix using eigonale, length and norm, Orthogonalization of Quadratic Forms, Positive definite more canonical forms by Orthogonal Transfer	en vectors. Inner products, ity. Quadratic forms and attrices, Reduction of Qua	inner product Nature of the dratic form to	06	02

Department of Computer Science & Engineering

	Eigen vectors using MATLAB. Self-Study: Iterative estimate for Eigen values and eigen vectors-Power and Inverse power method.		
V	Matrix Decomposition: Gram-Schmidt orthogonalization and QR decomposition. Singular value decomposition. Least Square solution of $AX = B$. Introduction to their applications in Image Processing and Machine Learning. Self-study: Applications to Linear Models. Principal Component Analysis. Illustrate SVD through MATLAB.	06	02

COURSE OUTCOMES: On completion of the course, student should be able to:

CO1: Understand and develop a working model in the language of matrices.

CO2: Understand the concepts of Vector spaces, linear independence, bases, dimension and linear Transformation.

CO3: Analyze and apply techniques of matrix decomposition and their applications in data analysis.

CO4: Solve problems on linear equations, matrices using MATLAB.

TEACHING - LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos.

TEXTBOOKS

- 1. B. S. Grewal, Higher Engineering Mathematics (44th Edition 2018), Khanna Publishers, New Delhi.
- 2. Seymour Lipschutz, Linear Algebra, 4th Edition, McGraw-Hill Companies, Inc., New Delhi.
- 3. David C. Lay, Steven R. Lay, Judi J Mc. Donald, Linear Algebra and its Applications, 6th Edition, 2021, Pearson Education.

REFERENCE BOOKS

- 1. P. N. Wartikar and J. N. Wartikar, Applied Mathematics, Vol I & II, Vidyarthi Prakashan.
- 2. Gilbert Strang, Linear Algebra and its Applications, 4th edition, 2005, Brooks Cole.3.
- 3. Richard Bronson & Gabriel B. Costa, Linear Algebra: An Introduction, 2nd edition, Academic Press.

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										
CO2	2	3										
CO3	3	2										
CO4	2	3										

Strength of correlation: Low-1, Medium-2, High-3

Academic Year: 2025-26	Semester: IV	Scheme	e: P24
Course Title: Theory Of Computation		_	
Course Code: P24CS402	CIE Marks:50	CIE We	eightage:50%
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:50	SEE Wo	eightage:50%
Teaching hours of Pedagogy:40	Exam Hours: 3 Hrs	1	
Credits:3			
Prerequisite: Discrete Mathematics Structu	ures, Data structures		
Course learning Objectives:			
CLO1: Gain the knowledge of basic kinds CLO2: To understanding of regular and co CLO3: Constructing the Push down auton	ontext-free languages		s .
1	Unit 1		8 Hours
Finite Automata: Chomsky Hierarchy, D Finite automata with Epsilon transitions, A	Application of finite automata.		,
Self-Study Content: Extended transitions		ing C-14174	
TextBook Mapping: Chapter 2- 2.1,2.2,	,2.3,2.4, 2.5	ing C-IVI /I	
TextBook Mapping: Chapter 2- 2.1,2.2,	,2.3,2.4, 2.5 Unit 2		8 Hours
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications.	2.3,2.4, 2.5 Unit 2 Properties: Regular expressions languages, Equivalence and mi	, Finite Automata	and Regular
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications. Self-Study Content: Closure properties; I	Quant 2 Properties: Regular expressions languages, Equivalence and mi	, Finite Automata	and Regular
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications. Self-Study Content: Closure properties; I TextBook Mapping: Chapter 3- 3.1,3.2,	Chapter 4- 4.1,4.4	, Finite Automata	and Regular omata,
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications. Self-Study Content: Closure properties; I TextBook Mapping: Chapter 3- 3.1,3.2,	Coperties: Regular expressions languages, Equivalence and mit Decision properties Chapter 4- 4.1,4.4 Unit 3	, Finite Automata nimization of aut	and Regular omata,
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications. Self-Study Content: Closure properties; I TextBook Mapping: Chapter 3- 3.1,3.2, Context Free Grammers, Languages And In CFG, The pumping lemma for CFLs, N	Chapter 4- 4.1,4.4 Unit 3 nd Properties: Context – free grand forms: Chomsky's Normal forms: Chomsky's Choms	, Finite Automata nimization of automata	and Regular omata, 8 Hours ees, Ambiguity
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications. Self-Study Content: Closure properties; I TextBook Mapping: Chapter 3- 3.1,3.2, Context Free Grammers, Languages And in CFG, The pumping lemma for CFLs, N Self-Study Content: Closure properties of	Croperties: Regular expressions languages, Equivalence and mineral Decision properties Chapter 4- 4.1,4.4 Unit 3 Ind Properties: Context—free gray of CFLs	, Finite Automata nimization of automata	and Regular omata, 8 Hours ees, Ambiguity
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications. Self-Study Content: Closure properties; I TextBook Mapping: Chapter 3- 3.1,3.2, Context Free Grammers, Languages And in CFG, The pumping lemma for CFLs, N Self-Study Content: Closure properties of TextBook Mapping: Chapter 5- 5.1-5.4	Chapter 4- 4.1,4.4 Unit 3 Ind Properties: Context – free grays of CFLs	, Finite Automata nimization of automata	and Regular omata, 8 Hours ees, Ambiguity Applications.
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications. Self-Study Content: Closure properties; I TextBook Mapping: Chapter 3- 3.1,3.2, Context Free Grammers, Languages And in CFG, The pumping lemma for CFLs, N Self-Study Content: Closure properties of TextBook Mapping: Chapter 5- 5.1-5.4	Croperties: Regular expressions languages, Equivalence and mineral Decision properties Chapter 4- 4.1,4.4 Unit 3 Ind Properties: Context—free gray of CFLs	, Finite Automata nimization of automata	and Regular omata, 8 Hours ees, Ambiguity
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications. Self-Study Content: Closure properties; I TextBook Mapping: Chapter 3- 3.1,3.2, Context Free Grammers, Languages And in CFG, The pumping lemma for CFLs, N Self-Study Content: Closure properties of TextBook Mapping: Chapter 5- 5.1-5.4	Croperties: Regular expressions languages, Equivalence and mineral Decision properties Chapter 4- 4.1,4.4 Unit 3 Ind Properties: Context – free grand forms: Chomsky's Normal forms: Chomsky's Normal forms. Unit 4 Pushdown automata, the languages	rammars, Parse tronal Forms ,GNF,	and Regular omata, 8 Hours ees, Ambiguity Applications. 8 Hours
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications. Self-Study Content: Closure properties; I TextBook Mapping: Chapter 3- 3.1,3.2, Context Free Grammers, Languages And in CFG, The pumping lemma for CFLs, N Self-Study Content: Closure properties of TextBook Mapping: Chapter 5- 5.1-5.4 Pushdown Automata: Definition of the F	Croperties: Regular expressions languages, Equivalence and mineral Decision properties Chapter 4- 4.1,4.4 Unit 3 Ind Properties: Context – free grand forms: Chomsky's Normal forms: Chomsky's Normal forms. Unit 4 Pushdown automata, the languages	rammars, Parse tronal Forms ,GNF,	and Regular omata, 8 Hours ees, Ambiguity Applications. 8 Hours
TextBook Mapping: Chapter 2- 2.1,2.2, Regular Expressions, Languages And P Expressions, Pumping Lemma for regular Applications. Self-Study Content: Closure properties; I TextBook Mapping: Chapter 3- 3.1,3.2, Context Free Grammers, Languages And in CFG, The pumping lemma for CFLs, N Self-Study Content: Closure properties of TextBook Mapping: Chapter 5- 5.1-5.4 Pushdown Automata: Definition of the F Pushdown Automata, Equivalence of PDA	Chapter 4- 4.1,4.4 Unit 3 Ind Properties: Context – free grays and forms: Chomsky's Normal forms: Chomsky's Normal forms and CFLs Unit 4 Pushdown automata, the language A's and CFG's, CFG to PDA.	rammars, Parse tronal Forms ,GNF,	and Regular omata, 8 Hours ees, Ambiguity Applications. 8 Hours

Department of Computer Science & Engineering

Turing Machines: The turning machine; Programming techniques for Turning Machines; Extensions to the basic Turning Machines, Undecidable problem that is RE, Post's Correspondence problem.

Self-Study Content: Problems that Computers cannot solve, Turing Machine and Computers.

TextBook Mapping: Chapter 8-8.1-8.4, Chapter 9-9.2,9.4

Department of Computer Science & Engineering

Course Outcomes: At the end of the course students should be able to :						
CO	Course Outcomes	Highest Level of Cognitive Domain				
CO1	To Design Finite Automata's for different Regular Expressions and Languages.	L3				
CO2	To Construct context free grammar for various languages.	L3				
CO3	To solve various problems of applying normal form techniques, push down automata and Turing Machines.	L4				

	Suggested Learning Resources: Textbooks:										
1	Introduction to Automata Theory. Languages. And Computation	John E. Hopcroft, Rajeev Motwani and JeffreyD.Ullman,	3 rd Edition (2013).	Pearson Edition							
Refer	ence Books:										
1.	Introduction to Languages and Automata Theory	John C Martin:	Edition, 2007.	Tata McGraw Hill							
2.	Introduction to Computer Theory	Daniel I.A. Cohen:	2nd Edition, 2004.	John Wiley & Sons							

Web links and Video Lectures (e-resources)

Web and Video link(s):

- 1. https://www-2.dc.uba.ar/staff/becher/Hopcroft-Motwani-Ullman-2001.pdf
- 2. https://www.mog.dog/files/SP2019/Sipser Introduction.to.the.Theory.of.Computation.3E.pdf E-

Books/Resources:

3. https://tinyurl.com/bdfst7kn

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Collaborative Activity
- 3. Case study
- 4. Learn by Doing

CO	Statement	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO	PSO 2	PSO 3
CO1	To Design Finite Automata's for different Regular Expressions and Languages	3	2	2	1	2	0	,	0	<u>, 9</u>	10	1	2	2	3
CO2	To Construct context free grammar for various languages	3	2	2	1	2						1	2	2	
CO3	To solve various problems of applying normal form techniques, push down automata and Turing Machines.	3	2	2	1	2						1	2	2	

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: IV	Scheme: P24						
Course Title: Design & Analysis of Algorithms								
Course Code: P24CS403	CIE Marks:50	CIE Weightage:50%						
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:50	SEE Weightage:50%						
Teaching hours of Pedagogy: 40	Exam Hours: 3 Hrs							
Credits: 3								

Course learning Objectives:

CLO1: Explain various computational problem-solving techniques.

CLO2: Apply appropriate method to solve a given problem.

CLO3: Describe various methods of algorithm analysis.

Unit 1 8 Hours

Introduction: Algorithm, Fundamentals of Algorithmic problem solving, Important Problem Types, Fundamental Data Structures – Graphs.

Fundamentals of the Analysis of Algorithm Efficiency: Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical analysis of Non-Recursive Algorithms with Examples [Max Element, Unique Elements] and Recursive Algorithms with Examples [Factorial, Tower of Hanoi].

Self-Study Content: Additional Examples of Mathematical analysis of Non-Recursive & Recursive Algorithms.

Textbook Map: Textbook1: Chapter 1; Chapter 2:2.1,2.2,2.3,2.4

Unit 2 8 Hours

Brute Force and Exhaustive Search: Selection Sort, Brute-Force String Matching, Exhaustive Search [Travelling Salesman Problem and Knapsack Problem], Depth First Search, Breadth First Search.

Decrease and Conquer: Introduction, Insertion Sort, Topological Sorting , Algorithms for generating Combinatorial objects

Self-Study Content: Bubble Sort and Sequential Search.

Textbook Map: Textbook1: Chapter 3: 3.1,.3.2,3.4,3.5

Chapter 4: 4.1,4.2,4.3

Unit 3 8 Hours

Divide and Conquer: General Method, Merge sort, Quick Sort, Binary Search, Strassen's Matrix Multiplication.

Transform and Conquer: Presorting, Balanced Search Trees, Heaps and Heap sort.

Self-Study Content: Binary Tree Traversals and Related Properties.

Text Book 1: Chapter 6: 6.1,6.3,6.4

Text Book 2:Chapter 3: 3.1,3.3,3.5,3.6,3.8

Department of Computer Science & Engineering

Unit 4 8 Hours

Space and Time Tradeoffs: Sorting by counting (comparison counting sort), Input Enhancement in String Matching (Horspool's), Hashing.

Greedy Technique: General Method, Job Sequencing with Deadlines, Prim's Algorithm, Kruskal's Algorithm, Single Source Shortest path (Dijikstra's Algorithm), Huffman Trees and codes

Self-Study Content: B-Trees, Optimal Binary Search Trees.

Text Book 1: Chapter 7: 7.1,7.2,7.3

Chapter 9: 9.1,9.2,9.3,9.4

Text Book 2: Chapter 4: 4.1,4.5

Unit 5 8 Hours

Dynamic Programming: General Method, The Knapsack Problem, Warshall's and Floyd's Algorithms.

Limitations of Algorithm Power: P, NP and NP- Complete Problems.

Coping with the Limitations of Algorithm Power:

Backtracking: n-Queens Problem, Subset-Sum Problem,

Branch and Bound: Knapsack Problem.

Approximation Algorithms for NP – Hard Problems: Travelling Salesperson Problem

Self-Study Content: Lower Bound Arguments, Decision trees.

Text Book 1: Chapter 8: 8.1,8.2,8.4,11.3,12.1,12.2,12.3

Text Book 2: Chapter 5: 5.1

Course Outcomes: On completion of this course, students are able to:						
COs	Course Outcomes with Action verbs for the Course topics.					
CO1	Understand the basic concepts of various algorithmic techniques					
CO2	Analyze the asymptotic performance of algorithms.					
CO3	Design solutions for the given problem using algorithmic technique.					

Sugg	Suggested Learning Resources:									
Textl	Textbooks:									
1	Introduction to the Design and Analysis of Algorithms	Anany Levitin	3 rd Edition, 2012	Pearson						
2	Fundamentals of Computer Algorithms	Ellis Horowitz, Satraj Sahni and Rajasekaran	2 nd Edition, 2014	Universities Press						

Department of Computer Science & Engineering

Refer	Reference Books:										
1.	Introduction to Algorithms	Thomas H.Cormen, Charles E.Leiserson, Ronal L.Rivest, Clifford Stein	3 rd Edition	РНІ							
2	The Design and Analysis of Algorithms	Aho, J.Hopcroft, Ullman	1 st Edition, 1974	Addison-Westey							

Web links and Video Lectures (e-resources)

- https://www.mooc-list.com/course/algorithms-design-and-analysis-part-1-coursera
- https://onlinecourses.nptel.ac.in/noc15_cs02/preview
- http://www.digimat.in/nptel/courses/video/106101060/L01.html

CO- PO Mapping

CO	Statements	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PS O3
CO1	Understand the basic concepts of various algorithmic techniques												2		
CO2	Design solutions for the given problem using algorithmic Technique.		3	3	2				2	1		2	2		1
CO3	Analyze the asymptotic performance of algorithms	3	3	3	1				1				2		

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: IV	Scheme: P24
Course Title: Software Engineering		
Course Code: P24CS404	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P): 3:0:0	SEE Marks:50	SEE Weightage:50%
Teaching hours of Pedagogy:40	Exam Hours: 3 Hrs	
Credits:3		

Course learning Objectives:

- CLO1: Demonstrate an understanding of the principles and techniques of Software Engineering.
- CLO2: Analyze the various steps involved in the design process and the different design Approaches which include function-oriented design and object-oriented design.
- CLO3: Understand the activities in project management, requirement engineering process and to identify the different types of system models.
- CLO4: Apply the knowledge of design engineering in software development.
- CLO5: Provide an understanding of the principles of software engineering in a broader system context and the notions of software engineering process and management.

Unit 1 8 Hours

Overview and Requirements

Introduction: FAQ's about software engineering, Professional and ethical responsibility; software process models, software specification, software design and implementation, software validation, software evaluation; Software Requirements: Functional and Non-functional requirements; User requirements; System requirements; software requirements document; requirements engineering processes: feasibility studies, requirements elicitation and analysis process, requirement validation and

management.

Self-Study Content: Agile Process Model.

Unit 2	8 Hours
--------	---------

Software Design

Architectural Design: system structuring, control models, modular decomposition, domain- specific architectures; Object Oriented Design: UML, Objects and Object Classes, An Object-Oriented Design process.

Self-Study Content: Design Evolution.

Unit 3 8 Hours

Critical System, Verification and Validation

Dependability: critical systems, availability and reliability, safety, security; critical system specification,

Verification and Validation: Planning; Software inspections; clean room software development; software testing; defect testing, integration testing, system testing, workbenches.

Self-Study Content: Object Oriented Testing.

Department of Computer Science & Engineering

Unit4	8 Hours

Management

Managing People: limits to thinking, group working, choosing and keeping people, the people capability maturity model; software cost estimation: productivity, estimation techniques, algorithmic cost modeling, project duration and staffing; quality management: quality assurance and standards, quality planning, quality control.

Self-Study Content: Change Management.

Unit 5 8 Hours

Evolution

Software change: program evolution dynamics, software maintenance, architectural evolution; software

Re-engineering: source code translation, program structure improvement, program modularization, data re-engineering.

Self-Study Content: Reverse Engineering Process.

Cours	Course Outcomes: On completion of this course, students are able to:							
COs	Course Outcomes with Action verbs for the Course topics.							
CO1	Understand the principles of large scale software systems, and the processes that are used to build them.							
CO2	Apply the process of analysis and design using object oriented approach.							
CO3	Analyzing and Identify the current trends in the area of software engineering.							
CO4	Identify the importance of testing in assuring the quality of software with an understanding of managing risks during the progress of the project.							
CO5	Discuss software evolution & related issues such as version management.							

Su	aggested Learning Resources:							
Te	xtbooks:							
1	Software Engineering	Ian Somerville	9 th Edition, 2007	Pearson Education				
Re	ference Books:							
1.	Software Engineering	A Practitioners Approach - Roger S. Pressman	7 th Edition, 2007	McGraw-Hill				
2	Software Engineering Theory and Practice	Shari Lawrence P- fleeger, Joanne M. Atlee	3 rd Edition, 2006	Pearson Education				
3	Software Engineering Principles and Practice	Waman S Jawadekar, Tata McGraw Hill	2004	-				
4	Software Engineering	Pankaj Jalote, Tata Mc Graw Hill	-	-				

Department of Computer Science & Engineering

CO-PO Mapping

СО	Statement	PO	PSO												
		1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	Understand the principles of large scale software systems, and the processes that are used tobuild them.	3	1	2			1	1		1			1	1	2
CO2	Apply the process of analysis and design using object oriented approach.	2		3			1			2		1		1	1
CO3	Analyzing and Identify the current trends in the area of software engineering.	2	1		1			1		1		2		1	
CO4	Identify the importance of testing in assuring the quality of software with an understanding of managing risks during the progress of the project.	3		3			2			2	1	2		1	1
CO5	Discuss software evolution & related issues such as version management.	2	3	3					1	2	1	2			

Department of Computer Science & Engineering

Semester: IV	Scheme: P24
ems	,
CIE Marks:50	CIE Weight age: 50%
SEE Marks:50	SEE Weight age: 50%
Exam Hours: 3 Hrs	
	CIE Marks:50 SEE Marks:50

Course Learning Objectives (CLOs):

CLO1: Understand the basic concepts of different models to design a relational database.

CLO2: Formulate SQL queries on data and improve the database design by Normalization.

CLO3: Describe the basic issues of transaction processing and concurrency control.

CLO4: Understand the databases recovery and database security.

Unit 1 8 Hours

Introduction to Database, Database system concepts and architecture: Databases Introduction, Characteristics of the database approach, Advantages of DBMS, Schemas, and Instances, Three Schema Architecture and Data Independence. ER model: Entity Types, Entity Sets, attributes and keys, Relation Types,

Relationship Sets, roles, and structural constraints, Weak Entity Types, ER Diagrams.

Self-Study Content: Network model, Object-Oriented data models.

Text Book Mapping: chapter 1: 1.1,1.3,1.6, Chapter 2: 2.1,2.2, Chapter 7: 7.3,7.4,7.5,7.6,7.7

Teaching-Learning Process: Chalk and board, Active Learning, Problem based learning.

Unit 2 8 Hours

Relational Model Concepts, Relational Model Constraints, update operations dealing with constraint violations, Relational Database Design using ER-to-Relational mapping.

Relational Algebra: Unary and Binary relational operations, Examples of simple queries in relational algebra.

Creation of table in SQL: SQL Data Definition and Data types.

Self-Study Content: Constraint violation problems

Text Book Mapping: chapter 3: 3.1,3.2,3.3, Chapter 4: 4.1, Chapter 6: 6.1,6.3,6.5, Chapter 9: 9.1

Teaching-Learning Process: Chalk and board, Active Learning, Problem based learning

Unit 3 8 Hours

SQL: Specifying constraints in SQL, retrieval queries in SQL, INSERT, DELETE, and UPDATE statements in SQL, More Complex SQL Retrieval Queries, Specifying Constraints as Assertions and Triggers, Views in SQL.

Self-Study Content: EXPLAIN command in SQL

Text Book Mapping: chapter 4: 4.2,4.3,4.4 Chapter 5: 5.1,5.2,5.3

Teaching-Learning Process: Chalk and board, Active Learning, Problem based learning

Unit 4 8 Hours

Basics of Functional Dependencies and Normalization for Relational Databases: Informal design guidelines for relation schema, Functional Dependencies: Inference rules, Normal Forms based on Primary Keys: First, Second and Third Normal Forms, Boyce–Coded Normal Form.

Transaction processing: Introduction to Transaction processing, Transaction and System concepts,

Department of Computer Science & Engineering

ACID property.

Self-Study Content: Dependency preservation.

Text Book Mapping: chapter 15: 15.1,15.2,15.3,15.4,15.5 Chapter 21: 21.1,21.2,21.3

Teaching-Learning Process: Chalk and board, Active Learning, Problem based learning.

Unit 5

8 Hours

Transaction processing (cont.): characterizing schedules based on Serializability: Serial, Non-serial and conflict-Serializable, Testing for conflict serializability of a schedule.

Concurrency Control: Two –phase locking techniques, Control based on time stamp ordering.

Database Recovery: Techniques based on Update, Shadow paging.

Database Security: Authentication, Authorization and access control, DAC, MAC and RBAC models,

Intrusion detection.

Self-Study Content: Logical databases, Web databases, SQL injection.

Text Book Mapping: Chapter 21: 21.5, Chapter 22: 22.1,22.2, Chapter 23: 23.3,23.4

Database security: https://www.slideshare.net/slideshow/dbms-unit-8-database security/239193734

Teaching-Learning Process: Chalk and board, Active Learning, Problem based learning.

Cours	e Outcomes: On completion of this course, students are able	to:	
CO's	Course Outcomes with Action verbs for the Course topics	Bloom's Taxonomy Level	Level Indicator
CO1	Apply the database concepts to create the relations by specifying various constraints.	Apply	L3
CO2	Design ER diagrams for given scenario using draw.io tool and transforms it to a relational model.	Design	L5
CO3	Apply suitable normalization technique to improve relational database design.	Apply	L3
CO4	Implement simple and complex queries for the given context using relational algebra and SQL.	Implement	L5
CO5	Demonstrate knowledge of concurrency control and recovery techniques in database systems.	Demonstrate	L3

Sugge	Suggested Learning Resources:								
Textb	ooks:								
1	Fundamentals of Database Systems Elmasri and Navathe 6 th Edition, 2011 Addison-Wesley								
Refer	Reference Books:								
1.	Data Base System Concepts	Silberschatz, Korth and Sudharshan	5 th Edition, 2006	Mc-Graw Hill					
2	An Introduction to Database Systems	C.J. Date, A. Kannan, S. Swamynatham	8 th Edition, 2006	Pearson Education					

Department of Computer Science & Engineering

CO-PO Mapping

СО	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PS O2	PS O3
CO1	Apply the database concepts to create the relations by specifying various constraints.	3	1	2									3	3	
CO2	Design ER diagrams for given scenario using draw.io tool and transforms it to a relational model.	3	2	3		2			2	2	2		3	3	
CO3	Apply suitable normalization technique to improve relational database design.	2	1	2									2	2	
CO4	Implement simple and complex queries for the given context using relational algebra and SQL.	3	2	2	1	2							3	3	
CO5	Demonstrateknowledgeofconcurrencycontrolandrecoverytechniquesindatabasesystems.	2	1	2									2	2	

Department of Computer Science & Engineering

Academic Year: 2024-25	Semester: IV	Scheme: P24
Course Title: AVR MICROCONT	ROLLER	
Course Code: P24CS406	CIE Marks: 50	CIE Weightage: 50%
Teaching hours/week (L:T:P) 3:0:0	SEE Marks: 50	SEE Weightage: 50%
Teaching hours of Pedagogy: 40	Exam Hours: 3 H	Iours
Credits: 3		

Prerequisite: Number Systems, Assembly Instructions, C programming

Course learning Objectives:

CLO1: Explain the fundamentals of AVR microcontroller

CLO2: Develop ALP/C programs using arithmetic and logical instructions

CLO3: Implement ALP/C code to accept data from external device process it and send the data to external device.

CLO4: Implement the code for an application which require modular programming concept.

Unit 1 8 Hours

Microcontrollers And Embedded Processors: Microcontroller versus microprocessors, Criteria for choosing microcontroller. Overview of the AVR family, General purpose registers in AVR, the AVR data memory, AVR status register, AVR assembler directives-.EQU, .ORG, .SET and .INCLUDE. The program counter and program ROM space in AVR- Program counter in the AVR, ROM memory map in the AVR family, ROM width in the AVR.

Self-Study Content: Numbering and coding system, Semiconductor Memories, Harvard and Von Neumann Architecture.

TextBook Mapping: Chapter 1- Section 1.1,1.2, Chapter 2-Section 2.1, 2.2,2.4, 2.5, 2.8

Unit 2 8 Hours

Data transfer instructions-LDS, LDI, MOV, STS IN, OUT. **Arithmetic instructions-** Addition of unsigned numbers, ADC and addition of 16 bit number, ADDIW, Subtraction of unsigned numbers, Multiplication of unsigned numbers, Division of unsigned numbers, INC, DEC, CP. **Logical instructions-** AND, OR EOR, COM, NEG, ROL, ROR, LSR, LSL, ASR and SWAP. **Branch instructions and looping**.

Self-Study Content: Arithmetic instructions (signed numbers). Unconditional branch instructions.

TextBook Mapping: Chapter 2- Section 2.6, Chapter 5- Section 5.1,5.3,5.4, Chapter 3- Section 3.1

Unit 3 8 Hours

Addressing Modes- single register, two register, Direct addressing mode, indirect addressing mode. Call instructions and Stack: CALL, RCALL, and ICALL.

Self-Study Content: AVR time delay: time delay calculation for AVR

TextBook Mapping: Chapter 6- Section 6.2, 6.3, Chapter 3- Section 3.2

Unit 4 8 Hours

Department of Computer Science & Engineering

I/O port programming in AVR, I/O Bit manipulation programming. Introducing some more assembler directives, BCD and ASCII conversions, Macros.

Self-Study Content: Timer0 programming and look up table and table processing

TextBook Mapping: Chapter 4- Section 4.1,4.2, Chapter 5- Section 5.5

Unit 5 8 Hours

AVR programming in C: Data types and time delays in C, I/O programming in C, Logic operations in C, Data conversion programs in C, Memory allocations in C. Data serialization in C.

Self-Study Content: Keypad interfacing: Interfacing the keypad to AVR

TextBook Mapping: Chapter 7- Section 7.1-7.6

Course	e Outcomes: On completion of the	nis course, students are able to:			
COs	Course Outcomes with Action	on verbs for the Course topics.	Bloom's Taxonomy Level	Level Indicator	
CO1	Understand the basic archinstructions.	itecture and AVR	Understand	L2	
CO2	Apply AVR assembly ins stored in memory/Register	Apply	L3		
CO3	Apply AVR C instructions	Apply	L3		
CO4	Analyze the given assem and write correct code and	bly program to identify bugs output.	Analyze	L4	
Sugge	sted Learning Resources:				
Textb	ooks:				
1.	Title	Author	Year & Edition (Latest)	Publisher	
	The AVR microcontroller	MuhammadAli Mazidi,	2019, 11 th	Pearson	
and embedded system using		Sarmad Naimi, Sepehr Naimi.	Impression	Education	
	assembly and C				
Refere	ence Books:		_		
1.	Programming and interfacing ATMEL's AVRs	New edition (29 July 2015)	Cengage Learning, Inc		

Web links and Video Lectures (e-resources)

- 1. https://www.youtube.com/watch?v=LquFL2dlvDE
- 2. https://slideplayer.com/slide/3221593/
- 3. https://www.youtube.com/watch?v=AjLUU3cDx08
- 4. https://electrovolt.ir/wp-content/uploads/2017/02/AVR Microcontroller_and_Embedded_Electrovolt.ir_.pdf
- 5. https://researchdesignlab.com/projects/AVR%20BOOK.pdf

Department of Computer Science & Engineering

Active Based Learning (Suggested Activity in Class)/ Practical Based Learning (Example)

- 1. Flip Class
- 2. Seminar/ poster Presentation
- 3. Individual Role play/Team Demonstration/ Collaborative Activity
- 4. Case study
- 5. Learn by Doing

Department of Computer Science & Engineering

CO-PO Mapping

СО	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	PSO 3
CO1	Understand the basic architecture and AVR instructions.	2													
CO2	Apply AVR assembly instructions to process the data stored in memory/register/IO.	2	2	2	2	3							1		
CO3	Apply AVR C instructions to process the data.	2	2	2	2	3							1		
CO4	Analyze the given assembly program to identify bugs and write correct code and output.	2	2	2	2	3							1		

Aca	demic Year: 2025-26	Semester: IV	Scheme: P24					
Cou	rse Title: Design & Analysis of Algorithm	s Laboratory						
Cou	rrse Code: P24CSL407	CIE Marks:50	CIE Weightage:50%					
Tea	ching hours/week (L:T:P):0:0:2	SEE Marks:50	SEE Weightage:50%					
Tea	ching hours of Pedagogy:24	Exam Hours: 3	,					
Cred	dits:1							
Not	e: All programs are to be implemented us	sing C Language						
1.	Develop a graph traversal module that use list all nodes reachable from a specified sta							
2.	Implement Depth-First Search (DFS) based algorithm to compute the topological ordering of vertices in a directed acyclic graph (DAG).							
3.	Implement Merge sort algorithm to sort the to sort the elements for different values of	•						
4.	Implement Quick sort algorithm to sort th to sort the elements for different values of	-						
5.	Develop a text search module using Hopattern within a larger text.	rspool's String Matching Algorit	hm to locate a specific					
6.	Implement Heap Sort algorithm to sort a li	st of unordered elements.						
7.	Implement a dynamic programming algorithat are part of optimal solution.	ithm for 0/1 Knapsack problem as	nd determine the objects					
8.	Implement Dijikstra's algorithm to find shortest paths from a given vertex to all other vertices in a weighted connected graph.							
9.	9. Implement Kruskal's Algorithm to find the minimum cost spanning tree for a given undirect graph.							
10.	Implement Travelling Salesperson Proble compute near-optimal tour paths for visiting							

Cours	Course Outcomes: On completion of this course, students are able to:							
COs	ourse Outcomes with Action verbs for the Course topics							
CO1	Implement the algorithms based on various algorithm design techniques.							
CO2	analyze the efficiency of various algorithms.							

Department of Computer Science & Engineering

CO-PO Mapping

СО	Statements	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	PSO 3
CO1	Implement the algorithms based on various algorithm design techniques.	3	3	3	2	3		1	2	2		2	2		1
CO2	Analyze the efficiency of various algorithms.	3	3	3	2				1	1		1	2		1

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: IV	Scheme: P24						
Course Title: Database Management System Laboratory								
Course Code: P24CSL408	CIE Marks:50	CIE Weightage:50%						
Teaching hours/week (L:T:P):0:0:2	SEE Marks:50	SEE Weightage:50%						
Teaching hours of Pedagogy:24	Exam Hours: 3							
Credits:1								

Note: All programs are to be implemented using SQL Language

1 Consider the following Company Database

EMPLOYEE (Fname: String, MINIT: STRING, LNAME: string, SSN: int, Bdate: date,

Address: string, Sex: string, Salary: int, super_ssn: int, DNO: int)

DEPARTMENT (Dname:string, Dnumber:int, mgr_ssn:int, mgr_strat_date:date)

DEPT_LOCATION (Dnumber: int, Dlocation: string)

PROJECT (Pname: string, Pnumber: int,Plocation:string, Dnum:int) WORKS_ON

(ESSN: int, Pno:int, hours:int)

DEPENDENT (essn:int, Dependent_name: string, sex: string, Bdate:date, Relationship: string)

Write the SQL Queries of the following:

- 1. Retrieve the name and address of all employees who work for the 'Research' department
- 2. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birthdate.
- 3. For each employee, retrieve the employee's name, and the name of his or her immediate supervisor.
- 2 Consider the following Company Database

EMPLOYEE (Fname: String, MINIT: STRING, LNAME: string, SSN: int, Bdate: date,

Address: string, Sex: string, Salary: int, super_ssn: int, DNO: int)

DEPARTMENT (Dname: string, Dnumber:int, mgr ssn:int, mgr strat date:date)

DEPT_LOCATION (Dnumber: int, Dlocation: string)

PROJECT (Pname: string, Pnumber: int, Plocation:string, Dnum:int)

WORKS ON (ESSN: int, Pno:int, hours:int)

DEPENDENT (essn:int, Dependent_name: string, sex: string, Bdate:date, Relationship: string)

Write the SQL Queries of the following:

- 1. Retrieve the name of each employee who has a dependent with the same first name and same sex as the employee.
- 2. Retrieve the employee numbers of all employees who work on project located in Bellaire, Houston, or Stafford.
- 3. Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the average salary. Display with proper headings.

Department of Computer Science & Engineering

3 Consider the following schema for a Library Database:

BOOK(Book_id, Title, Publisher_Name, Pub_Year)

BOOK AUTHORS(Book id, Author Name)

PUBLISHER(Name, Address, Phone)

BOOK COPIES(Book id, Programme id, No-of Copies)

BOOK_LENDING(Book_id, Programme_id, Card_No, Date_Out, Due_Date)

LIBRARY_PROGRAMME(Programme_id, Programme_Name, Address)

Write SQL queries to

- 1. Retrieve details of all books in the library id, title, name of publisher, authors, number of copies ineach Programme, etc.
- 2. Get the particulars of borrowers who have borrowed more than 3 books, but from Jan 2017 to Jun 2017.
- 3. Partition the BOOK table based on year of publication. Demonstrate its working with a simple query.
- 4 Consider the following database for a Banking enterprise:

BRANCH (branch-name: string,branch-city: string,assets: real)

ACCOUNT (accno:int,branch-name: string,balance: real)

DEPOSITOR (customer-name: string,accno:int)

CUSTOMER (customer-name: string,customer-street: string,city:string)

LOAN (loan-number:int,branch-name: string,loan- number-int)

BORROWER (customer-name: string,customer-street: string,city: string)

- 1. Create the above tables by properly specifying the primary and foreign keys
- 2. Enter 5 tuples for each relation
- 3. Find all the customers who have atleast two accounts at the main branch
- 4. Demonstrate how you delete all account tuples at every branch located in a specified city.
- 5 Consider the following database for a Sports League Management System:

TEAMS (team_id: int, team_name: string, city: string)

PLAYERS (player_id: int, player_name: string, age: int, position: string, team_id: int)

MATCHES (match_id: int, match_date: date, home_team_id: int, away_team_id: int, home_score: int, away_score: int)

STATS (stat_id: int, player_id: int, match_id: int, goals: int, assists: int, yellow_cards: int, red cards: int)

COACHES (coach_id: int, coach_name: string, team_id: int, experience_years: int)

Create the above tables by properly specifying the primary and foreign keys.

- 1. List all players in a specific team (e.g., team_id = 1)
- 2. Get the result of all matches where a specific team (e.g., team id = 2) played

Find top 5 players with the most goals

Department of Computer Science & Engineering

	Course Outcomes: On completion of this course, s	tudents are able to	•
CO's	Course Outcomes with Action verbs for the Course topics	Bloom's Taxonomy Level	Level Indicator
CO1	Design ER diagrams for given scenario using draw.io tool and transforms it to a relational model.	Design	L5
CO2	Implement simple and complex queries for the given context using SQL.	Implement	L5

CO-PO Mapping

СО	Statements	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	PSO 3
CO1	Design ER diagrams for given scenario using draw.io tool and transforms it to a relational model.	3	2	3		2			2	2	2		3	3	
CO2	Implement simple and complex queries for the given context using SQL.	3	2	2	1	2			2	2	2		3	3	

Aca	demic Year: 2025-26	Semester: IV	Scheme: P24							
Cou	rse Title: AVR Micro Controller Laborat	tory	'							
Cou	rse Code: P24CSL409	CIE Marks:50	CIE Weightage:50%							
Tea	ching hours/week (L:T:P):0:0:2	SEE Marks:50	SEE Weightage:50%							
Teac	ching hours of Pedagogy:24	Exam Hours: 3	·							
Cred	Credits:1									
Not	Note: All programs are to be implemented using Assembly & C Language.									
1.	Write a program to find greatest of three i	numbers.								
2.	Write a Program to Read two operands from Port A and Port B and operator from Port C If the									
	operator is '+'perform addition else if the operator is '-' perform subtraction Send the result to Port									
	D. For all other operator output 'E' to Port D.									
3.	Write a Program to clear bits (15,13,10) to set bits (8,3,2,1) and invert the bits (12,5).									
4.	Write a program to find the factorial of gi	iven positive number using	g subroutine.							
5.	Write a program to add 5 bytes of data sto	ored starting from \$300. St	tore the sum in R21 and carry in							
	R22. (Use direct addressing mode).									
6.	Write a program to count number of odd	and even numbers amon	g n bytes of data stored starting							
	from \$600 (Use indirect addressing mode)).								
7.	Vrite a program to accept two 8 bit number	ers from PORTA and PO	ΓRB. Multiply two numbers and							
	send the result to PORTC (lower byte) and	d PORTD (higher byte).								
8.	Write a program to monitor the bit 1 of PC	ORTC. If set send 'Y' to P	ORTA else send 'N' to PORTB.							
9.	Write a program to convert packed BCD	to ASCII.								
10.	Write a program to blink LED with appro	priate delay.								
11.	Display digits 0–9 on 7 Segment display	(common cathode).								
12.	Write a program to display the given mas	sage LCD.								

Department of Computer Science & Engineering

Course Outcomes: On completion of this course, students are able to:									
COs	Course Outcomes with Action verbs for the Course topics.	Bloom's Taxonomy Level	Level Indicator						
CO1	Design and implement AVR assembly program to process the data in register, memory and I/O.	Create	L6						
CO2	Design and implement programs in AVR C instructions.	Create	L6						

CO-PO Mapping

CO	Statement	PO	PS	PS	PS										
		1	2	3	4	5	6	7	8	9	10	11	01	O2	O3
CO1	Design and implement AVR assembly program to process the data in register, memory and I/O.		2	2	1	3	1	1	1	2	1	1	1	1	1
CO2	Design and implement programs in AVR C instructions.		3	3	2	3	1	1	1	2	2	1	1	1	1

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: IV	Scheme: P24						
Course Title: Employability Enhancement Skills – III (CSE/ISE/ECE/CSE(AIML)/CSDS/CSBS)								
Course Code: P24HSMC410A	CIE Marks:50	CIE Weightage:50%						
Teaching hours/week (L:T:P): 0:2:0	SEE Marks:50	SEE Weightage:50%						
Teaching hours of Pedagogy: 40 Hours	Exam Hours: 3 Hrs							
Credits: 01								

Course Learning Objectives: This course will enable the students to:

- Calculations involving simple and compound interest, averages, allegations & mixtures, proportions, variations and partnership.
- Explain concepts behind logical reasoning modules of series, coding & decoding, seating and data arrangements.
- Develop problem solving skills through Data structures.

UNIT – I 06 Hours

Quantitative Aptitude: Simple and Compound Interest, Averages.

Logical Reasoning: Series, Coding & Decoding.

Self-study component: Mensuration

UNIT – II 06 Hours

Quantitative Aptitude: Allegations and Mixtures, Ratios, Proportions and Variations.

Logical Reasoning: Seating Arrangement, Data Arrangement.

Self-study component: Types of cryptarithm

UNIT – III 06 Hours

Quantitative Aptitude: Partnership.

Verbal Ability: Sentence Completion, Ordering of Sentences.

Self-study component: Game based assessments

UNIT – IV DATA STRUCTURES I - Problem Solving Techniques and Object-Oriented Programming 06 Hours

Recursion: Introduction to recursion, Principle of mathematical induction, Fibonacci numbers, Recursion using arrays, Recursion using 2D arrays.

Time and Space Complexity: Order complexity analysis, Theoretical complexity analysis, Time complexity analysis of searching and recursive algorithms, Theoretical space complexity, Space complexity analysis of merge sort.

Backtracking: Introduction to Backtracking, Rat In a Maze, N-queen, Word Search.

Basics of OOP: Introduction to oops, Creating objects, Getters, and setters, Constructors and related concepts, Inbuilt constructor and destructor, Example classes.

Advance Concepts of OOP: Static members, Function overloading and related concepts, Abstraction, Encapsulation, Inheritance, Polymorphism, Virtual functions, Abstract classes, Exception handling.

Self-study component: Examples of Abstract Data Type

Department of Computer Science & Engineering

UNIT – V DATA STRUCTURES II – Linear Data Structures and Tress 06 Hours

Linked Lists: Introduction to linked list, Inserting node in linked list, Deleting node from linked list, Midpoint of linked list, Merge two sorted linked lists, merge sort of a linked list, Reversing a linked list.

Stacks and Queues: Introduction to stacks, Stack using arrays, Dynamic Stack class, Stack using linked list, Inbuilt stack, Queue using arrays, Dynamic queue class, Queue using linked list, Inbuilt queue.

Generic Trees: Introduction to Trees, Making a tree node class, Taking a tree as input and printing, Tree traversals, Destructor for tree node class.

Binary Trees: Introduction to Binary Trees, Taking a binary tree as input and printing, Binary Tree traversals, Diameter of binary tree.

Binary Search Trees: Introduction to Binary Search Trees, Searching a node in BST, BST class, Inserting and Deleting nodes in BST, Types of balanced BSTs.

Self-study component: Huffman tree, Expression Trees.

Course Outcomes: On completion of this course, students are able to:

COs	Course Outcomes with <i>Action verbs</i> for the Course topics	Bloom's Taxonomy Level	Level Indicator
CO1	Solve the problems based on simple and compound interests, averages, allegations & mixtures, ratios, proportions, variations and partnerships.	Applying	L3
CO2	Solve logical reasoning problems based on seating arrangements, data arrangement and verbal ability skills of sentence corrections and ordering of sentences.	Applying	L3
CO3	Analyze and represent various data structures and its operations.	Analyzing	L4
CO4	Develop programs with suitable data structure based on the requirements of the real-time applications	Applying	L3

Text Book(s):

- 1. Data Structures and Algorithms Made Easy by Narasimha Karumanchi
- 2. Data Structures through C in Depth by by S K Srivastava and Deepali Srivastava
- 3. Quantitative aptitude by Dr. R. S Agarwal, published by S. Chand private limited.
- 4. Verbal reasoning by Dr. R. S Agarwal, published by S. Chand private limited.

Department of Computer Science & Engineering

Reference Book(s):

- 1. Aaron M Tenenbaum, Yedidyah Langsam and Moshe J Augenstein, "Data Structures using C", 2014, low price edition, Pearson education.
- 2. Seymour Lipschutz ,"Data Structures with C (Schaum's Outline Series)" , July 2017, McGraw Hill Education.
- 3. Quantitative Aptitude by Arun Sharma, McGraw Hill Education Pvt Ltd.

CO ↓ / PO →	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1: Solve problems on simple & compound interest, averages, alligations & mixtures, ratios, proportions, variations, partnerships.	3	3		2	1					1	2
CO2: Solve logical reasoning & verbal ability problems (arrangements, sentence ordering).	2	3	1	1					1	3	1
CO3: Analyze & represent various data structures and their operations.	3	3	3	3	3					1	1
CO4: Develop programs with suitable data structures for real-time applications.	3	3	3	2	3				1	1	2

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: IV	Scheme: P24						
Course Title: National Service Scheme								
Course Code: P24NSS411	CIE Marks:50	CIE Weightage:50%						
Teaching hours/week (L:T:P): 0:0:2	SEE Marks:50	SEE Weightage:50%						
Teaching hours of Pedagogy: 20-24 Hrs	Exam Hours: -							
Credits: 00								

Course Outcomes (COs):

Upon successful completion of this course, students will be able to:

- **CO1: Analyze and propose water conservation:** Assess water resource issues and recommend conservation strategies considering stakeholder roles.
- **CO2: Develop rural business proposals:** Create actionable business proposals for increasing village income, including market analysis and implementation plans.
- **CO3:** Enhance educational outcomes and access: Design and implement initiatives to improve school performance and promote higher/technical/vocational education enrolment.
- **CO4: Apply engineering to community development:** Integrate engineering knowledge to develop solutions for water conservation, business development, and educational initiatives.
- **CO5: Evaluate community development impacts:** Assess the social, economic, and environmental impacts of community development projects.

Course Description: This course focuses on practical strategies for community development, covering water conservation techniques, business development in rural areas, and educational enhancement initiatives. It emphasizes stakeholder engagement, project planning, and implementation.

Course Content:

- Water conservation techniques, the role of different stakeholders (e.g., government, communities, NGOs), and implementation strategies.
- Developing actionable business proposals to increase village income and outlining implementation approaches.
- Supporting local schools to improve academic results and increase enrolment in higher/technical/vocational education.

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: IV	Scheme: P24
Course Title: Physical Education		
Course Code: P24PED411	CIE Marks:50	CIE Weightage:50%
Teaching hours/week (L:T:P): 0:0:2	SEE Marks:50	SEE Weightage:50%
Teaching hours of Pedagogy: 20-24 Hrs	Exam Hours: -	
Credits: 00		

Course Outcomes: At the end of the course, the student will be able to

- 1. Understand the ethics and moral values in sports and athletics
- 2. Perform in the selected sports or athletics of student's choice.
- Understand the roles and responsibilities of organisation and administration of sports and games.

Module I: Ethics and Moral Values

4 Hours

- 1. Ethics in Sports
- 2. Moral Values in Sports and Games

Module II: Specific Games (Any one to be selected by the student)

16 Hours

- 1. Volleyball Attack, Block, Service, Upper Hand Pass and Lower hand Pass.
- 2. Athletics (Track Events) Any event as per availability of Ground

Module III: Role of Organization and administration

4 Hours

Department of Computer Science & Engineering

Academic Year: 2025-26	Semester: IV	Scheme: P24			
Course Title: Yoga					
Course Code: P24YOG411	CIE Marks:50	CIE Weightage:50%			
Teaching hours/week (L:T:P): 0:0:2	SEE Marks:50	SEE Weightage:50%			
Teaching hours of Pedagogy: 20-24 Hrs	Exam Hours: -				
Credits: 00					

Course Outcomes (COs):

Upon successful completion of this course, students will be able to:

- **CO1:** Understand Yoga's ethics and philosophy: Explain Patanjali's Ashtanga Yoga (Yamas and Niyamas) and their relevance to personal and professional life.
- **CO2: Perform Yoga practices safely:** Execute Suryanamaskar, selected Asanas, Kapalabhati, and Pranayama techniques with correct technique, breathing, and safety awareness.
- **CO3: Analyze Yoga's effects:** Describe the benefits and contraindications of practiced techniques, explaining their impact on body and mind.
- **CO4: Apply Yoga for well-being:** Integrate Yoga for stress management, focus, mindfulness, and overall well-being.
- CO5: Understand Yoga's interconnectedness: Articulate the relationship between physical practices,

mental states, and ethical principles in Yoga.

Course Description: This course introduces students to the ancient practice of Yoga, focusing on its physical, mental, and ethical dimensions. It covers key components of Patanjali's Ashtanga Yoga, including Yamas and Niyamas, along with practical training in Asanas, Suryanamaskar, Pranayama, and Shatkarmas like Kapalabhati. The course aims to equip students with tools for stress management, improved focus, and overall well-being.

Course Content:

- **Patanjali's Ashtanga Yoga:** Yama (Ahimsa, Satya, Asteya, Brahmacharya, Aparigraha), Niyama (Shaucha, Santosha, Tapas, Svadhyaya, Ishvarapranidhana)
- **Suryanamaskar:** 12 counts, 4 rounds
- Asanas:
 - o Sitting: Sukhasana, Paschimottanasana
 - o Standing: Ardhakati Chakrasana, Parshva Chakrasana
 - o Prone: Dhanurasana
 - Supine: Halasana, Karna Peedasana
- **Kapalabhati:** 40 strokes/min, 3 rounds
- **Pranayama:** Suryanuloma-Viloma, Chandranuloma-Viloma, Suryabhedana, Chandra Bhedana, Nadishodhana

Meaning, Need, importance of Pranayama. Di fferent types. Meaning by name, technique, precautionary measures and benefits of each Pranayama

Academic Year: 2025-26	Semester: IV	Scheme: P24						
Course Title: Basic Engineering Mathematics – II								
Course Code: P24MADIP401	CIE Marks:100	CIE Weightage: 100%						
Teaching hours/week (L:T:P): 2:2:0								
Teaching hours of Pedagogy: 40 Hours								
Credits: 00								
Course Objectives: To provide essential concepts of linear algebra, introductory concepts of second & higher								
order differential equations along with v	arious techniques/method	ls to solve them, Laplace & inverse Laplace						
transforms and elementary probability th	eory.							
	UNIT-I							
Linear Algebra: Introduction - Rank of matrix by elementary row operations - Echelon form								
of a matrix. Consistency of system	of linear equations - Ga	auss elimination method. Gauss-						
Jordan and LU decomposition method	•							
Self-study Components: Application of Cayley-Hamilton theorem (without proof) to compute the inverse of a matrix-Examples.								
	UNIT-II							
Higher order ODE's: Linear differential equations of second and higher order equations with constant coefficients. Homogeneous /non-homogeneous equations. Inverse differential operators and variation of parameters. Solution of Cauchy's homogeneous linear equation and Legendre's linear differential equation.								
Self-study Components: Method of undetermined coefficients								
UNIT-III								
	01111111							
Multiple Integrals: Double and tripl integrals by change of order of integrals		ntegration. Evaluation of double						
Vector Integration: Vector Integration: Integration of vector functions. Concept of a line integrals, surface and volume integrals. Green's, Stokes's and Gauss theorems (without proof) problems.								
Self-study Components: Orthogonal curvilinear coordinates.								
UNIT-IV								

Department of Computer Science & Engineering

Laplace transforms: Laplace transforms of elementary functions. Transforms of derivatives and integrals, transforms of periodic function and unit step function-Problems only. Inverse Laplace transforms: Definition of inverse Laplace transforms. Evaluation of Inverse transforms by standard methods. Self-study Components: Application to solutions of linear differential equations and simultaneous differential equations.	12Hrs					
UNIT-V						
Probability: Introduction. Sample space and events. Axioms of probability. Addition and multiplication theorems. Conditional probability – illustrative examples.						
Self-study Components: State and prove Bayes's theorem.						

Course Outcomes: After completing the course, the students will be able to								
CO1	Apply matrix theory for solving systems of linear equations in the different areas of linear							
COI	algebra.							
CO2	Solve second and higher order differential equations occurring in electrical circuits,							
CO2	damped/un-damped vibrations.							
CO3	Identify-the technique of integration evaluates double and triple integrals by change of variables,							
COS	and vector integration technique to compute line integral							
CO4	Explore the basic concepts of elementary probability theory and apply the same to the							
	problems of decision theory,							

Text Book:

1. B. S. Grewal: Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43rd Ed., 2015.

Reference books:

- 1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2015.
- 2. N. P. Bali and Manish Goyal: Engineering Mathematics, Laxmi Publishers, 7th Ed., 2007.

Academic Year: 2025-26	Semester: IV	Scheme: P24								
Course Title: Additional Communicative English – II										
Course Code: P24HDIP408	CIE Marks: 100	CIE Weightage:100%								
Teaching hours/week (L:T:P): 0:2:0	SEE Weightage: -									
Teaching hours of Pedagogy: 30 Hours										
Teaching hours of Pedagogy: 30 Hours Exam Hours: 3 Hrs Credits: 00										
Module-1										
Listening Skills II 2 Hours										
Levels of listening, Active listening, Techniques Listening for specific information	of listening. Activity: Li	stening for main ideas and								
Speaking	Skills II	6 Hours								
Language of discussion – Giving opinion, agreeing / disagreeing, asking questions, making suggestions. Sentence stress – content and structure words, Speaking situations, Intonations and Summarizing skills										
Module										
Reading Skills II 2 Hours										
Guessing meaning from the context, Understand	ling graphical information	on, Summarizing. Activity:								
Book review	rilla II	Л Цони с								
Writing Skills II 4 Hours Linkers and connectives, Sentence and paragraph transformation, Mind mapping techniques, Letter										
writing, Essay writing	ir transformation, Trime	mapping teeminques, Letter								
Module	-3									
Email Etiq		4 Hours								
Parts of an email, Writing an effective subject line, email language and tone. Activity: Email writing practice - Scenario based emails										
Group Presentat	ions	2 Hours								
Group presentations by the students										
Module-4										
Goal Setting		2 Hours								
Defining goals, types of goals, Establishing SMART goals, Steps in setting goals, Goal setting activity										
Individual Prese	4 Hours									
Individual presentation by the students										
Module-5										
Teamwork		4 Hours								
Defining teams, Team vs. Group, Benefits and cha	0	ms, Stages of team building,								
Building effective teams, Case studies on teamwork										

Department of Computer Science & Engineering

Course Outcomes: On completion of this course, students will be able to,

- CO 1: Understand the role of communication in personal and professional success
- CO 2: Comprehend the types of technical literature to develop the competency of students to apprehend the nature of formal communication requirements.
- CO 3: Construct grammatically correct sentences to strengthen essential skills in speaking & writing and to develop critical thinking by emphasizing cohesion and coherence
- CO 4: Demonstrate effective individual and teamwork to accomplish communication goals.

Textbooks and Reference Books:

- 1. Communication Skills by Sanjay Kumar and Pushpa Lata, Oxford University Press 2015.
- 2. Everyday Dialogues in English by Robert J. Dixson, Prentice-Hall of India Ltd., 2006.
- 3. Developing Communication Skills by Krishna Mohan& Meera Banerjee (Macmillan)
- 4. The Oxford Guide to Writing and Speaking, John Seely, Oxford.
- 5. English Language Communication Skills Lab Manual cum Workbook by Rajesh Kumar Singh, Cengage learning India Pvt Limited 2018
- 6. The 7 Habits of Highly Effective People by Stephen R Covey, Simon & Schuster 2020
- 7. You Are the Team: 6 Simple Ways Teammates Can Go from Good to Great by Michael G. Rogers

CO - PO - PSO Matrix

	PO										PSO				
CO	PO1	PO2	PO 3	PO 4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1												2			
CO2										2					
CO3										2					
CO4									2						
CO5									2	2		2			